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ABSTRACT

Liu, Xin. Ph.D., Purdue University, December, 2002. Opportunistic Scheduling in
Wireless Communication Networks. Major Professors: Edwin K. P. Chong and Ness
B. Shroff.

Wireless spectrum efficiency is becoming increasingly important with the grow-

ing demand for wideband wireless services. In this dissertation, we present a unified

framework for opportunistic scheduling, which exploits the time-varying nature of the

radio environment to increase the overall performance of the system. Our framework

enables us to investigate various categories of scheduling problems, differing through

their QoS objectives. The QoS objectives studied in this dissertation include two

fairness requirements (temporal fairness and utilitarian fairness) and a minimum-

performance requirement. We find optimal solutions for these scheduling problems.

An attractive feature of these optimal solutions is that they are given in a simple

parametric form, hence lending themselves to on-line implementation. We provide

algorithms to estimate the parameters in these optimal solutions and describe imple-

mentation procedures for each solution.

An advantage of opportunistic scheduling is that it can be coupled with other re-

source management mechanisms to further increase network performance. In this

dissertation, we study joint scheduling and power control schemes for intercell-

interference alleviation. We investigate two different problems in this context. In

the first problem, the objective is to minimize the average transmission power, and

thus interference to other cells, while maintaining the required data-rate for each user

within the cell. In the second problem, the objective is to maximize the net utility

(defined as the difference between the value of throughput and the cost of power con-

sumption) with the same data-rate requirements. We establish the optimality of our
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joint scheduling and power-allocation schemes for these problems, and discuss their

properties.
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1. INTRODUCTION

1.1 Overview of Cellular Communication Systems

The last decade has witnessed a tremendous growth in the wireless market. First

generation (analog voice) and second generation (digital voice/low-rate data) wireless

networks have been ubiquitously deployed. While first generation and second gener-

ation wireless networks focus on voice services, future generation wireless networks

face new challenges — high-rate-data services and QoS (Quality of Service) support.

The global demand for wireless “bandwidth” exhibits, now and in the foreseeable

future, significant growth [1]. Compared with wireline networks, wireless resource is

very scarce. While more wired network “bandwidth” is created when new physical

resources (cable, fiber, router, etc.) are added to the network, wireless communica-

tion requires sharing a finite natural resource: the radio frequency spectrum. The

data-rate capacity that a radio frequency channel can support is limited by Shan-

non’s capacity laws [2]. Significant efforts have been made to improve the wireless

spectrum efficiency in order to meet the future demand for high-data-rate wireless

communication. We next give a brief introduction of some key components.

Multiuser Detection

Wireless multi-user systems are subject to co-channel interference. However,

multi-access noise has considerable structure, and certainly much less randomness

than white Gaussian background noise. By exploiting that structure, multi-user de-

tection can increase spectral efficiency, receiver sensitivity, and the number of po-

tential users. The key element used in optimum multiuser detectors is a bank of

matched filters (the outputs are sufficient statistics for demodulation), followed by a
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dynamic programming algorithm (Viterbi’s algorithm). Although optimum multiuser

detectors can achieve good performance, the corresponding computational complexity

increases exponentially in the number of users; i.e., the optimum multiuser detection

problem is NP-hard. On the other hand, linear multiuser receivers, such as decorre-

lators and linear minimum-mean-square-error (MMSE) receivers, are suboptimal but

practically more appealing [3]. Note that the conventional matched filter receiver can

be considered as a degenerate special case of a linear multiuser receiver.

Antenna arrays

Directive antennas can be used to concentrate energy in the direction of the re-

ceiver/transmitter. They have lower power requirements and minimize interference

to and from other antennas. Furthermore, antenna arrays can greatly improve spec-

tral efficiency even in environments with significant local scattering. Smart antennas

(in the conventional terminology) exploit spatial diversity by optimally combining

the response from each antenna element [4, 5]. Smart antennas use multiple antenna

elements on one end only: SIMO (single input multiple output) on the receiver side,

and MISO (multiple input single output) on the transmitter side. Further, if re-

ceiving/transmitting array elements are sufficiently separated, the fading parameters

at different elements become weakly dependent. This transmitter/receiver diversity

mechanism effectively creates a plurality of subchannels sharing the same RF band-

width. MIMO (multiple input multiple output) is built on such assumptions. A

good example is the Bell Laboratories BLAST system [6]. The BLAST system has

demonstrated spectral efficiencies on the order of 40b/s/Hz with eight elements at

both transmitter and receiver. This is more than 40 times the achievable data rate

with single-element transmitting/receiving antennas using the same bandwidth and

power.
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Channel error control coding

Error control coding arose from the seminal contribution in communication theory

made by Shannon [2] that establishes fundamental limits on reliable communication,

and presents the challenge of finding specific families of codes that achieve the capacity

limit. Error control codes add redundancy to the data in order to protect it from the

random disturbances introduced by the channel. In the last several years, significant

work has been done on Turbo coding/decoding [7]. Turbo coding can potentially

achieve performance that is close to the Shannon capacity limits at the expense of

complexity.

Power control

In wireless communication systems, the received power represents signal strength

to the desired receiver but interference to all other users. Power control is intended

to provide each user an acceptable connection by eliminating unnecessary interfer-

ence. The elegant work of Yates [8] abstracts the important properties of various

power control algorithms and presents a unified treatment of power control. While

power control is widely implemented in CDMA systems, such as IS-95 [9], it has

also been shown to increase the call carrying capacity for channelized systems, such

as TDMA/FDMA systems [10]. Furthermore, beyond the conventional concept of

power control as a means to eliminating the “near-far” effect, power control is an

effective resource management mechanism. It plays an important role in interference

management, channel-quality/service-quality provisioning, and capacity management

[11, 10, 12, 13].

Admission control

Empirical studies have shown that a typical user is far more irritated when an

ongoing call is dropped than a call blocked from the very beginning. Hence, a goal of
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admission control is to admit as many users as possible (to maximize the revenue of the

system) while maintaining a certain level of quality of service for ongoing connections.

Admission control is closely coupled with other resource allocation schemes, such as

dynamic channel allocation, power control, and mobility prediction — to name a

few. Furthermore, admission control becomes more challenging in the content of

supporting multimedia services with different and multi-faceted QoS requirements

in a wireless environment. One could take two approaches to the admission control

problem: (1) to admit a user based on whether the network can satisfy the QoS

requirements of all the users at the time of admission; (2) to admit a user based

on whether the network can satisfy the QoS requirements of all users taking into

consideration mobility and variation in the channel performance. A solution that

only considers the former has the appeal of simplicity, but the admissible decision

would inherently have to be conservative (this approach is used, for example, with

channel reservation strategies for handoffs in circuit-switched cellular systems [14]).

The latter approach would have the advantage of more intelligent decision-making at

the cost of increased computation [15].

Multiple access

Multiple access techniques allow a communication medium to be shared among

different users. The three basic multiple access techniques are frequency-division

multiple access (FDMA), time-division multiple access (TDMA), and code division

multiple access (CDMA). First generation analog cellular systems use FDMA. Both

TDMA and CDMA techniques are implemented in second generation digital cellular

systems and are competing for third generation standards [16]. The third generation

CDMA standard in North American is cdma2000 while the WCDMA standard is

specified in Europe and Japan. Enhanced Data Rates for GSM Evolution (EDGE)

standards are currently specified in order to provide a third-generation evolution

option for TDMA systems. The two components of EDGE, enhanced circuit switched
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data (ECSD) and EGPRS, define enhancements for circuit-mode and packet-mode

data, respectively.

OFDM

Current cellular networks provide satisfactory voice services at a reasonable cost.

However, this success story does not easily extend to data services, such as wire-

less web surfing. Whether wireless channels can provide high-data-rate service and

whether such a service is affordable are two major concerns. To provide high-data-

rate service, wide-band transmission is necessary. In a wide-band single-carrier sys-

tem, we face the problems of frequency-selective-fading and inter-symbol-interference.

Furthermore, to make high-rate-data service affordable, a higher spectrum efficiency

(compared with current systems) has to be achieved. OFDM (orthogonal fre-

quency division multiplexing) is a promising transmission (modulation) technique

[17, 18, 19, 20] to combat ISI over multipath fading channels and provide efficient

frequency utilization. This technique appears to show promise for high-speed wire-

less/wireline data communications. A properly coded and interleaved OFDM system

is reported to exceed the performance of many other existing systems. For example,

Flarion claims that their flash-OFDM airlink enables three times higher spectral effi-

ciency than the CDMA 3G airlink, and the cost per Megabyte of data is about 10.5

cents [21, 22].

1.2 Adaptation Techniques

Today’s cellular systems are designed to provide good coverage for voice services,

providing the required minimal data rate everywhere, that is, to achieve a minimum

required signal to interference plus noise ratio (SINR) over 90–95 percent of the

coverage area. This ensures that the data rate required to achieve “good” voice

quality can be provided “everywhere.” As a result, SINRs that are much larger than

the target minimum are achieved over a large portion of the cellular coverage area.
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For packet data service, the larger SINRs can be used to provide higher data rates by

reducing coding or spreading and/or increasing the constellation density. Research

shows that cellular spectral efficiency (in terms of b/s/Hz/sector) can be increased by

a factor of two or more if users with better links are served at higher data rates [23].

Procedures that exploit this are already in place for the major cellular standards in

the world.

Rate adaptation in CDMA systems is achieved through a combination of vari-

able spreading, coding, and code aggregation. Wideband CDMA (WCDMA) and

cdma2000 systems achieve higher rates through a combination of variable spreading

and coding. The WCDMA standard, being specified in Europe and Japan, supports

data rates up to 2.048 Mb/s in 5 MHz bands (using 6 code channels simultaneously).

The third generation North American CDMA standard (cdma2000) supports a data

rate up to 614.4kb/s in 5 MHz bands with the lowest spreading factor of 2.

In TDMA systems, adaptive coding, adaptive modulation, and incremental redun-

dancy are used to achieve variable data rates. GPRS-136 and EGPRS specify the use

of incremental redundancy transmission. GPRS-136 employs adaptive modulation

and incremental redundancy to achieve higher throughput. EGPRS, the enhanced

packet-mode data standard for a 3G evolution option for TDMA system, exploits

adaptive coding, adaptive modulation, and incremental redundancy to achieve a peak

rate of 473.6kb/s (when 8 time-slots are aggregated).

For incremental redundancy transmission, an initial transmission of data is un-

coded or lightly coded. On decoding failure at the receiver, incremental amounts

of redundancy are transmitted until the receiver is able to successfully decode the

data frame. For example, if a rate-1/2 non-systematic convolutional code is used,

the output of one generator is mapped to the D data blocks, and the output of the

other generator is mapped to the D parity blocks. The D data blocks are transmit-

ted first, resulting in a code rate of unity for the first transmission. In response to

each negative acknowledgment, one parity block is transmitted to achieve the code

rates: D/(D+1), · · · , 1/2. Thus, the procedure effectively matches the coding rate to
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the channel SINR without requiring SINR estimation and feedback. In addition, the

transmission of redundant information dispersed in time provides a diversity advan-

tage during decoding. Incremental redundancy is also being considered for WCDMA

standards.

With rate adaption techniques, these packet data standards mentioned before

achieve cellular spectral efficiency in the range 0.1–0.3 b/s/Hz/sector, while in second

generation cellular systems, the voice services achieve cellular spectral efficiencies in

the range of 0.03–0.05 b/s/Hz/sector.

Research shows that fast rate adaptation is required to achieve high capacity on

fast fading channels [24]. In IS-856 [25, 26], the pilot bursts provide the mobile users

with the means to estimate accurately and rapidly the channel conditions. Among

other parameters, each mobile user estimates the received Ec/Nt of all resolvable

multipath components and predicts the effective received SINR. This channel state

information is then fed back to the base station via the reverse link data rate request

channel (DRC) and updated as quickly as every 1.67 ms.

Channel condition feedback is important to rate adaptation [23]. In CDMA sys-

tems, pilot strength measurements are used to estimate the SINR at the receiver.

In IS-95B and cdma2000, pilot strength measurements are provided to the base sta-

tion through the pilot strength measurement message (PSMM) or included in the

supplemental channel request message (SCRM). The measurement report message in

WCDMA can additionally include block error rate, bit error rate (BER), received

power, path loss, and downlink SINR measurements. In TDMA systems, channel

quality is estimated at the receiver and the information is provided to the transmit-

ter through appropriately defined messages. In both GPRS and EGPRS systems,

measurement reports are included in supervisory ARQ status messages. Metrics that

have been proposed for estimating channel quality are: frame error rate, mean and

standard deviation of symbol error rate (SER) or BER, average SINR. The GPRS

measurement reports consist of an estimated BER and a variance of the BER es-

timated over a short moving window. In GPRS-136, the receiver provides channel
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quality feedback as an indication of the modulation schemes that are permitted based

on the estimated SINR.

In summary, adaptation techniques have been developed so that a user can achieve

high performance when it is in a good condition. Based on this technique, trans-

mission scheduling further improves spectrum efficiency by letting users transmit in

relatively good conditions, as we will discuss in the following section.

1.3 Transmission Scheduling in Wireless Networks

In wireline networks, resource allocation schemes and scheduling policies play im-

portant roles in providing service performance guarantees, such as throughput, delay,

delay-jitter, fairness, and loss rate [27]. Scheduling disciplines and associated perfor-

mance problems have been widely studied in packet-switched networks [28, 29]. There

are two types of scheduling disciplines: work-conserving and non-work-conserving.

A server using a work-conserving discipline is never idle when there is a packet to

be sent. With a non-work-conserving discipline, each packet is assigned, either ex-

plicitly or implicitly, an eligibility time. Even when the server is idle, if no pack-

ets are eligible, none will be transmitted. Examples of work-conserving scheduling

disciplines are: Delay Earliest-Due-Date (Delay-EDD), Virtual Clock, Fair Queuing

(FQ), Weighted Fair Queuing (WFQ), and Worst-case Fair Weighted Fair Queueing

(WF2Q). However, with work-conserving disciplines, the traffic pattern is distorted

inside the network due to fluctuations in the network load. For services that require

guaranteed performance, the more important performance index is the end-to-end

delay bound rather than the average delay. This is one of the motivations for non-

work-conserving scheduling policies. Several non-work-conserving disciplines have

been proposed [27]: Jitter Earliest-Due-Date (Jitter-EDD), Stop-and-Go, Hierarchi-

cal Round Robin (HRR), and Rate-Controlled Static Priority (RCSP). In addition

to the challenge of providing service performance guarantees, scheduling disciplines
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must be simple and scalable to be implemented in real networks due to the size of

wireline networks.

It is important to note that resource allocation and scheduling schemes from the

wireline domain do not carry over to wireless systems because wireless channels have

unique characteristics not found in wireline channels. Some of these characteristics

are:

• Channel conditions are constantly varying.

• Network performance depends on channel conditions and signal processing tech-

niques.

• If the same resource is given to different users, the resultant network perfor-

mance (e.g., throughput) could be different from user to user.

We next explain these characteristics in more detail and why they are important to

the design of wireless scheduling policies. In wireless networks, the channel conditions

of mobile users are time-varying. Radio propagation can be roughly characterized by

three nearly independent phenomena: path-loss variation, slow log-normal shadowing,

and fast multipath-fading. Path losses vary with the movement of mobile stations.

Slow log-normal shadowing and fast multipath-fading are time-varying with different

time-scales. Furthermore, a user receives interference from other transmissions, which

is time-varying; and background noise is also constantly varying. Hence, mobile users

perceive time-varying channel conditions. SINR (signal to interference plus noise

ratio) is a commonly used measure of channel conditions. Fig. 1.1 shows the time-

varying SINR of a mobile user. Other measures include BER (Bit Error Rate) and

FER (Frame Error Rate).

Because channel conditions are time-varying, users experience time-varying service

quality and/or quantity. For voice users, better channel conditions may result in bet-

ter voice quality. For packet data service, better channel conditions (or higher SINR)

can be used to provide higher data rates using adaption techniques explained in Sec-

tion 1.2. Research shows that cellular spectral efficiency (in terms of b/s/Hz/sector)
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Fig. 1.1. User’s time-varying SINR

can be increased by a factor of two or more if users with better links are served at

higher data rates [23]. Procedures to exploit this are already in place for all the major

cellular standards: adaptive modulation and coding schemes are implemented in the

TDMA standards, and variable spreading and coding are implemented in the CDMA

standards. In general, a user is served with better quality and/or a higher data rate

when the channel condition is better. Hence, good scheduling schemes should be able

to exploit the variability of channel conditions to achieve higher utilization of wireless

resources.

The performance (e.g., throughput1) of a user depends on the channel condition

it experiences, hence, we expect different performance when the same resource (e.g.,

radio frequency) is assigned to different users. For example, consider a cell with two

users. Suppose that user 1 has a good channel, e.g., it is close to the base station.

User 2 is at the edge of the cell, where the path-loss is significant and the user

experiences large interference from adjacent cells. If the same amount of resource

(power, time-slots, etc.) is assigned, it is likely that the throughput of user 1 will be

much larger than that of user 2.

1Throughput is the number of useful information bits successfully transmitted between the base
station and mobile users during a unit time.
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Different assignments of the wireless resource will affect the system performance,

hence, resource allocation and scheduling policies are critical in wireless networks. In

the dissertation, we study opportunistic scheduling; by opportunistic, we mean the

ability to exploit the variation of channel conditions. Earlier, we have described the

unique features of wireless networks. Then an important question is: under such

conditions, what should be the basic features of a scheduling policy? Consider a few

users that share the same resource. The users have constantly varying channel con-

ditions, which imply constantly varying performance. The scheduling policy decides

which user should transmit during a given time interval. Intuitively, we want to as-

sign resource to users experiencing “good” channel conditions so that the resource

can be used efficiently. At the same time, we also want to provide some form of

fairness or QoS guarantees to all users. For example, allowing only users close to the

base station to transmit with high transmission power may result in very high system

throughput, but may starve other users. This basic dilemma motivates our work:

to improve wireless resource efficiency by exploiting time-varying channel conditions

while at the same time control the level of fairness/QoS among users.

Fairness criteria may have different implications in wireline and wireless networks.

In wireline networks, when a certain amount of resource is assigned to a user, it is

equivalent to granting the user a certain amount of throughput/performance value.

However, the situation is different in wireless networks, where the amount of resource

and the performance values are not directly related (though correlated). Hence, we

study two kinds of fairness: temporal vs. utilitarian. Temporal fairness means that

each user gets a fair share of network resource, and utilitarian fairness means that

each user gets a certain share of the overall system capacity. Further, we consider

both long-term fairness and short-term fairness in the dissertation. The basic idea of

opportunistic scheduling is to let users transmit in “good” channel conditions, and

thus a natural question is how long a user is willing to wait (for good conditions).

Hence, there exists tradeoff between scheduling performance gain and short-term

performance. In addition to fairness, we consider a long-term QoS metric: each user
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has a specific data-rate requirement for the system. Because the capacity of a wireless

system is not fixed, it is not always an easy task to determine the feasibility of the

requirements of all users. We will study these issues in more detail in the dissertation.

Interference management is also a crucial component of efficient spectrum utiliza-

tion in wireless systems because interference limits the system capacity ultimately.

Power allocation is a traditional interference management mechanism. It has been

well studied and widely used in wireless systems to maintain desired link quality, min-

imize power consumption, and alleviate interference to others [8]. Further, because

users experience time-varying and location-dependent channel conditions in wireless

environments, we can schedule users “opportunistically” so that a user can exploit

more of its good channel conditions and avoid (as far as possible) bad times, at least

for applications (e.g., data service) that are not time-critical. Hence, joint scheduling

and power-allocation scheme should be able to further improve the spectrum efficiency

and decrease power consumption.

Opportunistic scheduling exploits the variation of channel conditions, and thus

provides an additional degree of freedom in the time domain. Moreover, it can be

coupled with other resource management mechanisms to further increase network

performance. A good example of it is joint scheduling and power allocation as ex-

plained earlier. In the literature, opportunistic scheduling is also referred as multiuser

diversity [30]. Occasionally, these two terms may have slightly different meanings. An

example is the case where there is only one user in the system and the objective is to

minimize transmission power while maintaining a certain data rate.

1.4 Scope of the Report

We now briefly describe the organization of the dissertation. In Chapter 2, we de-

scribe the system model used in the dissertation and review some related work. Chap-

ter 3 provides a case study of opportunistic scheduling with temporal fairness. Here,

we present an opportunistic transmission scheduling policy that exploits time-varying
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channel conditions and maximizes the system performance stochastically under the

temporal fairness constraint. We prove the optimality of the scheduling scheme with

the assumption that the system is stationary. We also prove that every user improves

its performance over a non-opportunistic scheduling policy when users have indepen-

dent performance values. Through simulation results, we show that the scheme also

works well for non-stationary scenarios and results in significant performance improve-

ments over a scheduling scheme that does not take into account channel conditions.

We also show that our scheduling scheme is robust to estimation errors. Further, we

describe a scheme to improve “short-term” performance. In Chapter 4, we present a

unified framework for opportunistically scheduling user transmissions to exploit the

time-varying channel conditions in wireless communication systems. The objective

is to maximize the system performance while satisfying various QoS requirements.

Our framework enables us to investigate three categories of scheduling problems in-

volving two fairness requirements (temporal fairness and utilitarian fairness) and a

minimum-performance requirement. We provide optimal scheduling solutions, discuss

the advantages and disadvantages of the various scheduling formulations, and study

the asymptotic behavior of our opportunistic scheduling schemes. We also show that

our results can be generalized to include non-stationary policies in a non-stationary

environment. In Chapter 5, we present joint scheduling and power-allocation schemes

to alleviate intercell interference. First, we study the problem with the objective to

minimize the average transmission power, and thus interference to other cells, while

maintaining the required data-rate for each user within the cell. Then we study the

problem to maximize the net utility, defined as the difference between the value of

throughput and the cost of power consumption, with the same data-rate requirements.

We establish the optimality of our joint scheduling and power-allocation schemes for

both problems. Finally, we conclude our work and outline proposals for future work

in Chapter 6.
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2. SYSTEM MODEL AND RELATED WORK

2.1 Land-Mobile Radio Propagation

The three basic propagation mechanisms which impact propagation in a mobile

communication system are reflection, diffraction, and scattering [31]. Reflection oc-

curs when a propagating electro-magnetic wave impinges upon an object that has

very large dimensions compared to the wavelength of the propagating wave. Reflec-

tions occur from the surface of the earth and from buildings and walls. Diffraction

occurs when the radio path between the transmitter and receiver is obstructed by

a surface that has sharp irregularities (edges). The secondary waves resulting from

the obstacle are present throughout the space and even behind the obstacle, giving

rise to a bending of waves around the obstacle. Scattering occurs when a medium

through which the wave travels consists of objects with dimensions that are small

compared to the wavelength, and where the number of obstacles per unit volume is

large. Scattered waves are produces by rough surfaces, small objects, or by other

irregularities in the channel. In practice, foliage, street signs, and lamp posts induce

scattering in a mobile communication system.

We next describe the propagation models that reflect the impact of these three

basic propagation mechanisms. Land-mobile radio signal can be characterized in

terms of three propagation regimes:

• power-law propagation;

• log-normal shadowing;

• fast fading.

Power-law propagation is on the largest scale. Both theoretical and measurement-

based propagation models indicate that the average received signal power decreases
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logarithmically with distance, whether in outdoor or indoor environments. Such

models have been used extensively in the literature. The average large-scale path loss

for an arbitrary transmitter-receiver separation is expressed as a function of distance

by using a path loss exponent. For example, in Lee’s model [32], the path loss lp (dB)

is

lp = K + 10α log10(d)− α0,

where d is the distance between the transmitter and receiver, α is the path loss factor,

α0 is a correction factor used to account for different base station and mobile station

(MS) antenna heights, transmit powers, and antenna gains, and K is a constant,

which has different values in different environments.

Furthermore, received power variations of many decibels can occur due to shad-

owing even for small shifts in range. An explanation for lognormal shadowing is as

follows. Consider the received signal to be the result of the transmitted signal passing

through or reflecting off some random number of objects such as buildings, hills, and

trees. The individual processes each attenuate the signal to some degree and the final

received value is thus the product of many transmission efficiency factors. Therefore,

the logarithm of the received signal equals the sum of a large number of factors,

each also expressed in decibels. As the number of factors becomes large, the central

limit theorem shows that the distribution of the sum can be modeled as a Gaussian

distribution under fairly general assumptions [33]. The shadowing term s(k) (dB) is

modeled as a zero-mean stationary Gaussian process with autocorrelation function

given by

E(s(k)s(k +m)) = σ2
oξ
vT/D
d ,

where ξd is the correlation between two points separated by a spatial distance D

(meters), and v is velocity of the mobile user. In our simulation, we use a value of

σo = 4.3 dB, corresponding to a correlation of 0.3 at a distance of 10 meters, as

reported by Gudmundson [34].

Finally, as a mobile moves over very small distances, the instantaneous received

signal strength may fluctuate rapidly giving rise to small-scale fading. The reason for
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this is that the received signal is sum of many contributions coming from different

directions because local scatterers commonly surround the receiver antenna. Since

the phases are random, the sum of the contributions varies widely; for example, obeys

a Rayleigh fading distribution. During small-scale fading, the received signal power

may vary by as much as three or four orders of magnitude when the receiver is moved

by only a fraction of a wavelength [31].

In summary, radio propagation can be roughly characterized by three nearly

independent phenomena: path-loss variation, slow log-normal shadowing, and fast

multipath-fading. Path losses vary with the movement of mobile stations. Slow

log-normal shadowing and fast multipath-fading are time-varying with different time-

scales. Also the interference a user received due to other transmissions is time-varying.

Furthermore, background noise is also constantly varying. All this contribute to the

channel having time-varying characteristics and motivates the need for “opportunis-

tic” scheduling schemes.

2.2 Literature Review

In wireline networks, resource allocation schemes and scheduling policies play im-

portant roles in providing service performance guarantees, such as throughput, delay,

delay-jitter, fairness, and loss rate. Scheduling disciplines and associated perfor-

mance problems have been widely studied in packet-switching networks [28, 29]. For

a good survey of such algorithms, see [27]. However, as mentioned in the introduction,

scheduling schemes from the wireline domain do not carry over to wireless systems

because wireless channels have unique characteristics not found in wireline channels.

Transmission scheduling for wireless networks has recently attracted a lot of atten-

tion. First, scheduling policies of wireline networks are extended to wireless networks,

where the bursts of errors in wireless channels is taken into account. To elaborate,

a wireless channel is modeled by a two-state Markov chain [35]: a user experiences

error-free transmission when it observes a “good” channel, and unsuccessful transmis-
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sion in a “bad” channel. Using such a channel model, wireless fair scheduling policies

have been studied [36, 37, 38, 39]. These works provide various degrees of perfor-

mance guarantees, including short-term and long-term fairness, as well as short-term

and long-term throughput bounds. A survey of these algorithms can be found in

[40]. The limitation of these works is that channels are modeled as either “good” or

“bad,” which is too simple to characterize realistic wireless channels, especially for

data services.

The IS-856 system has been developed at Qualcomm to provide a versatile wireless

Internet solution [26]. This system is also known as High Data Rate (HDR) [25]. The

first fundamental design choice of HDR is to separate the services by including two

interoperatble modes: that is, 1x mode for voice and low-rate data and 1xEV mode

for high-rate data services. In 1xEV mode, a single user is served at any instant (e.g,

time-multiplexed CDMA); therefore avoiding power sharing and allocating the entire

access point (e.g., base station) power to the user being served. The Access Point

always transmit at full power achieving very high peak rates for users that are in a

good coverage area. The Access Terminal, on a slot-by-slot basis (1.67 ms), measures

the pilot strength, and continuously requests an appropriate data rate based on the

channel conditions.

The scheduler in IS-856 uses a different notion of fairness known as proportional

fairness [41, 42]. Proportional fairness (PF) scheduler maximizes the product of the

throughput delivered to all the users. In other words, the set of throughput achieved

by different users is proportionally fair if increasing the throughput of one user from

the current level by x% requires a cumulative percentage decrease in all the users of

more than x%. To be specific, assume that there are N users and Ri(t) is the estimate

of the average rate for user i for slot t, i = 1, · · · , N . Also, suppose that at slot t, the

current DRC (i.e., requested date rate) from user i is DRCi(t), again i = 1, · · · , N .

The algorithm works as follows:

• Scheduling: The user with the highest ratio of DRCi(t)/Ri(t) of all N users

will receive transmission at each decision time. Ties are broken randomly.
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• Update Average Rate: For each user i,

Ri(t+ 1) = (1− 1/tc)Ri(t) + 1/tc ×DRCi(t)× 1i,

where 1i = 1 if user i is chosen to transmit, otherwise 1i = 0.

The value of parameter tc used by the scheduling algorithm is related to the maximum

amount of time for which an individual user can be starved [43].

The author of [44, 45] analyzes the PF scheduler under simplified conditions. Let

(C/I)i(t) = aibi(t),

where ai is the distance dependent component of C/I for user i and bi(t) is the

random component of C/I for user i, including Rayleigh or Ricean fading. The

author of [44, 45] assumes that the rate is a linear function of C/I(t) and bi(t)s are

independent among the users and across time. It is then shown that when bi(t) are

i.i.d. (independent and identically distributed) among users, the PF scheduler gives

equal power and time to users and the throughput of individual users, Ti, is inversely

proportional to ai; i.e., Ti/ai equals a constant value. Further, when users have

different distributions of bi(t) (such as Rayleigh vs. Ricean), the user with the higher

variability of bi(t) gains higher throughput while using a (slightly) smaller amount of

time.

In [46, 47, 48], the authors study scheduling algorithms for the transmission of

data to multiple users. Both delay and channel conditions are taken into account.

Roughly speaking, the algorithm can be described as:

argmax ρiWiRi

where Wi is the head-of-the-line packet delay for queue i, Ri is the channel capacity,

and ρi is some constant. The proposed scheduler achieves throughput optimality,

defined in [46] as follows: a scheduling algorithm is throughput optimal if it is able

to keep all queues stable if this is at all feasible to do with any scheduling algorithm.

Further, the authors of [47] state the following result (assuming there is a finite set
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of channel states): to maximize the system throughput with minimum-throughput

requirements, there exists some constant ci such that one should choose a user with

the maximum value of ciRi. In these papers, however, there is no discussion on how

to obtain the values of ci, how to break ties, or how feasibility plays a role. Further,

in [49, 50], the authors study an exponential rule:

argmax ρiRi exp

(
aiWi

β + W̄ η

)
,

where Wi is the queue length (or waiting time), and W̄ is the average queue length

(or waiting time) over users. Using the exponential rule, when all queues are filled to

similar capacity, the channel condition plays a significant part. On the other hand, if

one queue is much longer than others, then the queue length becomes dominant and

the longer queue gets a higher chance to transmit. Hence, this algorithm balances

the tradeoff between queue length and throughput. The exponential rule is also

throughput optimal.

The authors of [51] investigate a scheduling algorithm to maximize the minimum

(weighted) throughput of users. To elaborate, the objective function is

maximize min
i

lim
N→∞

E

(
N∑
t=1

1{}iRi(t)

)
,

where Ri(t) is the rate of user i at time t, 1{}i = 1 if time-slot t is assigned to user i,

and 1{}i = 0 otherwise. The optimal solution is in the form of

argmax
i

ciRi(t),

where ci can be interpreted as the shadow price or reward, whose value depends on

the distributions of Ri. The authors also propose an adaptive algorithm to determine

the parameters, and study the transient behavior.

In [52], power consumption of users in a fading channel is considered. In general,

by varying the transmission rate and power, based on the current fading level, a user

in the wireless network can utilize the available energy more efficiently. However,

such an approach can lead to long delays or buffer overflows. In [52], the tradeoffs

between the required power and various notions of delay are analyzed.
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The authors of [12] study joint power control and intracell scheduling in DS-CDMA

systems. Assuming that the data rate is a linear function of its SINR, it shows that

scheduling users one-by-one within a cell results in better performance than simulta-

neous transmission within a cell, especially when the data rate requirement is high.

Hence, via one-by-one intracell transmission, the required transmission power of a cell

is minimized. In addition to the intracell one-by-one scheduling, they suggest a dis-

tributed power control scheme for intercell interference management. Basically, each

base station calculates the minimum power needed to support the required data rates

of users in the cell. The transmission power remains constant within each scheduling

interval. The base stations then update their required powers based on interference

from other cells without intercell communication, which is similar to standard dis-

tributed power control algorithms. It is shown that the proposed distributed power

control algorithm converges, the rate of convergence is geometric, and that the re-

sulting power is the minimum required to support the required data rate. However,

this work in its current form does not exploit time-varying property of channels; i.e.,

no opportunistic scheduling.

In [53], the authors study scheduling problems for real-time traffic with fixed

deadlines. Scheduling in a time-slotted system is considered, the capacity of the

channel is time-varying, and the BS can estimate the channel of the current time-

slot. The mobiles achieve different QoS based on the unit prices that they are willing

to pay. The objective of the base station is to maximize the revenue of the base

station. The scheduling is preemptive and the base station obtains a partial revenue

if a request is served partially. The unit price of a request is a non-increasing function

of the time. The offline optimal scheduling scheme is shown to be NP-complete if

only one user can be assigned to a time-slot. The authors then propose a greedy

algorithm that chooses the request with the largest revenue in the current time-slot

to serve. The authors show that the greedy algorithm is 1/2 competitive against the

offline optimal algorithm. Further, they show that no deterministic online algorithm

can achieve a competitive ratio higher than 1/2. (This does not mean that the greedy
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algorithm will always do better than other deterministic online algorithms.) Then

the authors extend the work to various scenarios such as multi-carrier case, the case

where a single slot can be shared by several users, and the case where the price is a

non-increasing function of the total data that has been served to this request (which

may be applicable to layered multimedia data where base layer is more important

than enhanced layer).

Downlink scheduling in CDMA systems for data transmission is also studied in

[54]. The work considers a performance metric called “stretch”, which is defined as

the delay experienced by a packet normalized by its minimum achievable delay. The

stretch can be considered as normalized delay. A near optimal, offline, polynomial

time algorithm is proposed to minimize the maximum stretch under the assumption

of continuous rates, and various online algorithms for continuous-rates/discrete-rates

are studied with simulations.

In [55], the authors study transmission schemes for time-varying wireless chan-

nels with partial state information. A finite-state Markov chain is used to model

the channel, and channel information is only available at the end of the time-slot if

the transmission occurs during the time-slot. It is assumed the channel transmission

matrix is known. The objective is to minimize a discounted infinite-horizon cost func-

tion, which can be used to indicate the balance between power cost and throughput.

An example of the cost function is:

C(g, s) =

 c0 s = 0

c1s+ c2Pe(gs) s > 0,

where g is the state, s is the transmission power, and Pe is the error probability. The

resulting optimal solution is a threshold back-off scheme: suppose a packet transmis-

sion occurs during the last time-slot and the channel state is known. If the current

minimum cost is greater than c0 (no transmission cost, penalizes a scheme for placing

too much emphasis on energy efficiency), then the system keeps silence for a cer-

tain number of time-slots, and then resumes transmission. The optimal transmission

power is the power that minimizes the current cost function. The paper studies the ef-
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fect of channel memory with partial state information, while the result may depend on

the accuracy of the POMDP (Partially Observable Markov Decision Process) channel

models and the estimation of transmission matrix.

Opportunistic scheduling exploits the channel fluctuations of users. Hence, the

larger the channel fluctuation, the higher the scheduling gain. Thus a natural ques-

tion to ask is what we should do in environments with little scattering and/or slow

fading. In [30], the authors use multiple transmission antennas to “induce” channel

fluctuations, and thus exploit multi-user diversity. Consider a static channel (static

in the time-scale of interest) and N multiple transmission antennas. Let hni(t) be

the channel gain from antenna n to user i at time t. At time t, x(t) is multipled by√
an(t)e

jθn(t) and transmitted at antenna n, i = 1, · · · , N , where
∑N

n=1 an(t) = 1 to

preserve the total transmission power. Here, an(t) and θn(t) are random variables

used to “induce” channel fluctuation. Each user feeds back the overall SINR of its

“induced” channel to the base station. The base station selects the user with a large

peak value of SINR to transmit according to a certain scheduling rule. When there

are a large number of users, the base station can always find a user with its peak

SINR to transmit. Hence, the system performance is asymptotically as good as a

solution with an optimal beam-forming configuration, while using only the overall

SINR as feedback. Note that the optimal beam-forming configuration is:

an =
|hni|2∑N
n=1 |hni|

2
, n = 1, · · · , N

θn = − arg hni, n = 1, · · · , N,

which requires individual channel information (amplitude and phase) from each an-

tenna.

2.3 System Model

The current PCNs (Personal Communication Networks) use a cellular architec-

ture. The geographical coverage area is partitioned into cells, each served by a base



- 24 -

station. Mobile users are connected to the network via the base stations. Within a

cell, users share resource in terms of time, frequency, power, and/or code.

In the dissertation, we consider a time-slotted system—time is the resource to be

shared among all users. At any given time, only one user can occupy a given channel

(frequency band) in a cell; multiple users could transmit at different frequencies within

a cell. We focus on the scheduling problem for one channel. Note that a channel in

this context could be very large. For example, it is possible for 10 users to share a

1MHz frequency band for high rate data service, while in the IS-136 standard, a voice

channel uses 10KHz bandwidth.

In a time-slotted system, the access technique can either be TDMA (Time Division

Multiple Access) or CDMA (Code Division Multiple Access). It is obvious that our

system model fits TDMA systems. The time-slot in the system model is a natural

match for the time-slot in a TDMA system. Note that the time-slot in the system

model could consist of more than one contiguous time-slot in the TDMA system.

The system model also fits the need for data traffic in CDMA systems. In tradi-

tional CDMA systems, (e.g., IS-95), a multitude of low-data-rate channels are multi-

plexed together (with transmissions made orthogonal in the code domain) and share

the available base station transmitted power with some form of power control. This

is an optimal choice for many low-rate channels sharing a common bandwidth. The

situation becomes less optimal when a small number of high-rate users share the chan-

nel. The inefficiencies increase further when the same bandwidth is shared between

low-rate and high-rate data users, since their requirements are vastly different [25].

Research shows that, to achieve high-data capacity, data users should transmit in a

time-multiplexed mode instead of transmitting simultaneously [56, 57].

In the IS-856 standard, the downlink is designed differently from that in IS-95.

The downlink transmissions in IS-856 are time multiplexed and transmitted at the

full power available to the mobile users [26]. This means that a single user is served at

any instant with full transmission power. Hence, the system model in the dissertation
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also fits time-slotted CDMA systems, which is a potential solution for providing high-

data-rate service in CDMA systems.

The scheduling scheme can be applied to both downlink and uplink. In general,

downlink transmission is more important for data traffic due to the highly asymmet-

ric nature of the data service. Further, the uplink may experience synchronization

difficulties due to different distances between users and the base station when the

duration of a time-slot is short.

As explained previously, channel conditions in wireless networks are time varying

and thus users experience time-varying performance. Throughout the dissertation, we

use SINR (signal to interference and noise ratio) as a measure of channel conditions

[58, 59]. Note that SINR is related to Eb/N0 (the ratio of bit energy to noise power

spectrum density) as

SINR =
EbR

N0W
,

where W is the channel bandwidth and R is the bit rate. We use a stochastic model

to capture the time-varying channel condition of each user. To elaborate, let {αki }

be a stochastic process associated with user i, where αki represents the received SINR

for user i at time k given that the transmission power is 1. For analytical simplicity,

we assume that the stochastic process {αki , k = 1, 2, · · ·} is stationary and ergodic.

Hence, we drop the time index k.

In Chapters 3 and 4, we use an abstract concept to measure time-varying and

channel-condition-dependent performance of each user. Specifically, let Ui be a ran-

dom variable associated with user i, measuring the level of performance that would be

experienced by user i if it is scheduled to transmit at a generic time-slot. The value

of Ui measures the “worth” of a time-slot to the user i, and is in general a function

of its channel condition, indicated by SINR. The value of Ui could also depend on

other factors, such as user i’s coding/modulation scheme and power consumption.

Usually, the better the channel condition of user i, the larger the value of Ui. Denote

~U = (U1, · · · , UN), where N is the number of users.
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Recently, the notion of “utility” has been used to study wireless resource manage-

ment problems [60, 61]. Utility is generally defined as a measure of satisfaction that a

user derives from accessing the wireless resource (in terms of bandwidth, power, etc).

Along these lines, we can think of the value of Uk
i as the “utility value” of the channel

to user i at time k. However, unlike the typical usage of utility, note that in the dis-

sertation, we model a user’s channel-utility value as a stochastic process, capturing

the important feature of wireless systems that channel conditions are time-varying.

We next present examples of possible performance measures. The most straight-

forward performance measure is the throughput (in terms of bits/sec) or the “mone-

tary value” of the throughput (in terms of dollars/sec), where the throughput is the

number of information bits per time-slot successfully transmitted between the base

station and the mobile user. Usually, a user’s throughput is a nondecreasing function

of SINR (signal to interference and noise ratio). Depending on the class of a user,

the throughput could be a step function, an S-shape function, or a linear function of

the SINR, as shown in Figure 2.1. Hence, different classes of users may have different

throughput values even with the same channel condition. In our system model, we do

not make any assumption on the physical-layer implementation of the system. Note

also that the throughput of a user could be limited by the user’s interference to other

cells. For example, consider a user at the edge of a cell, where the user’s transmission

causes significant interference to a neighboring cell. When the neighboring cell is

heavily loaded, the user’s maximum transmission power may have to be limited to

avoid undue interference to the neighboring cell.

Besides throughput, other issues could also be important to users and different

users could have different utility functions. For example, a user on a vehicle where

there is no scarcity of power may be concerned only about the throughput. On the

other hand, power consumption is very important to a handset user, and hence the

performance of such a user could have the form:

value of throughput− cost of power consumption.
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Fig. 2.1. Users’ throughput as a function of SINR.

In summary, the performance value Ui is an abstraction used to capture the time-

varying and channel-condition-dependent “worth” of a time-slot to a user. The use of

such a general model frees us from physical-layer implementation details and allows

us to focus on the problem of designing scheduling policies. We assume throughout

that performance values for different users are comparable and additive. For example,

the unit of the performance values could be “dollars per time unit” for all users. In

other words, if Uk
1 > Uk

2 , then assigning time-slot k to user 1 rather than user 2 will

lead to higher system performance. Also, if U1
1 and U2

1 are the performance values

for user 1 at time-slots 1 and 2, then the total performance over the two time-slots is

U1
1 + U2

1 .

In this chapter, we describe the propagation model and system model. In the

following chapters, we will use the system model to study opportunistic scheduling

problems.
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3. TEMPORAL FAIRNESS SCHEDULING: A CASE

STUDY

In this chapter, we study an opportunistic scheduling problem with temporal fairness

constraints based on the system model presented in Section 2.3. First, we present an

opportunistic scheduling policy that maximizes the system performance stochastically

under the temporal fairness constraint. Then we describe a stochastic-approximation-

based algorithm that can be used to efficiently estimate the key parameters of the

scheduling scheme on-line. Through simulation results, we show that the scheme also

works well for non-stationary scenarios, is robust to estimation errors, and results in

significant performance improvements over a scheduling scheme that does not take

into account channel conditions. Last, we discuss a scheme to improve “short-term”

performance.

3.1 Problem Formulation

Because time is the resource shared among users, a natural fairness criterion is to

give each user at least a certain share of the system resource, i.e., time. The temporal

fairness requirement is defined as follows: suppose that there are N users in a cell,

each user i is assigned a fixed fraction of resource (i.e., time-slots), denoted as ri,

where 0 ≤ ri ≤ 1 and
∑N

i=0 = 1. That means, on average, ri portion of time-slots

should be used by user i. Note that ri is predetermined by time-slot assignment

algorithm, whose value typically depends on the user’s class, the price the user is

willing to pay for the wireless service, or the user’s current channel conditions.

Recall that ~U = (U1, · · · , UN), where Ui is a random variable representing the

performance value of user i at a generic time-slot as explained in Section 2.3. The

scheduling problem is stated as follows: given ~U , determine which user should be
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scheduled (in the given time-slot). We define a policy Q to be a mapping from

the performance-vector space to the index set {1, 2, · · · , N}. Given ~U , the policy Q

determines the user to be scheduled: if Q(~U) = i, then user i should use the time-slot,

and the system receives a performance “reward” of UQ(~U) (i.e, Ui). Hence, E(UQ(~U))

is the average system performance value associated with policy Q. Note that the

policy Q is potentially “opportunistic” in the sense that it can use information on the

performance vector ~U to decide which user to schedule.

We are interested only in policies that result in satisfaction of the temporal fairness

constraints. Specifically, we say that a policy Q is feasible if P{Q(~U) = i} = ri for

all i = 1, · · · , N . Feasible policies are those that obey the given fairness constraints.

We use Θ to denote the set of all feasible policies.

Our goal is to find a feasible policy Q that maximizes the average system perfor-

mance while satisfying the fairness constraints. The problem can be stated formally

as follows:

maximize
Q∈Θ

E
(
UQ(~U)

)
. (3.1)

Note that we can write

E
(
UQ(~U)

)
= E

(
N∑
i=1

Ui1{Q(~U)=i}

)

=
N∑
i=1

E
(
Ui1{Q(~U)=i}

)
,

where

1A =

 1 if A occurs,

0 otherwise

is the indicator function of the event A. In other words, the overall objective function

is the sum of all users’ average performance values (where we reap a reward of Ui

only if user i is scheduled).

Recall that we assumed the sequence {~Uk} to be stationary. This assumption

does not preclude correlations across users or across time. In practice, a user’s chan-

nel condition is usually time-correlated, for example, due to shadowing. Hence, a
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user’s performance is usually also time-correlated. Furthermore, the performance of

different users may also be correlated. For example, when the intercell interference is

high, most users’ performance values simultaneously decrease. However, if users have

enough separated locations, it is reasonable to assume that their performance values

are only weakly dependent.

We first present our opportunistic scheduling policy given the temporal fairness

constraints. (We provide the proof of its optimality in Appendix A.1.) We then ex-

plain how to estimate the parameters used in the policy. Further, we describe a pro-

cedure to implement our scheduling policy by tuning the parameter values based on

measurements, and provide simulation results. Finally, we study a heuristic schedul-

ing algorithm to improve short-term performance.

3.2 Opportunistic Scheduling Policy

3.2.1 2-user Case

For the purpose of illustration, we start with the 2-user case. Suppose that user

1 and user 2 have temporal requirements r1 and r2, respectively, and r1 + r2 = 1. We

wish to find an opportunistic policy that solves (3.1).

Define y(v) = P{U1 + v ≥ U2}, where v ∈ R. Because y(v) is the distribution

function of the random variable (U2 − U1), y(v) is a right-continuous monotonically

increasing function of v with y(∞) = 1 and y(−∞) = 0. Hence, there exists a v∗

(which may not be unique) such that for any ε > 0,

y(v∗ − ε) ≤ r1 ≤ y(v∗),

where r1 is the temporal requirement of user 1.

We consider the scheduling policy under two conditions.

1. y(v∗) = r1: The opportunistic scheduling policy in this case is given by

Q∗(~U) =

 1 if U1 + v∗ ≥ U2,

2 otherwise.
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2. y(v∗) > r1: Let y−(v) = P{U1 + v > U2}, which is a left-continuous monotoni-

cally increasing function of v. So

y−(v∗) ≤ r1 < y(v∗);

i.e., y(v∗) − y−(v∗) = P{U1 + v∗ = U2} > 0. Let p = (r1 − y−(v∗))/(y(v∗) −

y−(v∗)). Note that 0 ≤ p ≤ 1. The opportunistic scheduling policy is then

given by

Q∗(~U) =



1 if U1 + v∗ > U2

1 with prob. p if U1 + v∗ = U2

2 with prob. 1− p if U1 + v∗ = U2

2 if U1 + v∗ < U2

It is clear that the policy Q(~U) defined above is feasible:

P{Q(~U) = 1} = P{U1 + v∗ > U2}+ P{U1 + v∗ = U2}p = r1.

The policy can be described as follows. The space spanned by U1 and U2 is divided

into two halves by the line U1+v∗ = U2. Above the line (i.e., U2 > U1+v∗), we always

schedule user 2 to transmit. Under the line (i.e., U1 + v∗ > U2), we always schedule

user 1 to transmit. If the probability of the line is positive, some randomization

is needed if we fall on the line—with probability p, we schedule user 1 and with

probability 1 − p, we schedule user 2, where p = (r1 − y−(v∗))/(y(v∗) − y−(v∗)) is

determined by the temporal fairness constraints.

3.2.2 General Case

Now we extend the policy from the previous section to the N-user case. Define

yi(~v) = P{Ui + vi ≥ max
j 6=i

(Uj + vj)}, for i = 1, · · · , N,

where ~v = (v1, · · · , vN). Note that yi(~v) is a monotonically-increasing right-continuous

function of vi and a monotonically-decreasing left-continuous function of vj , j 6= i.
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In Appendix A.5, we show that there exists a ~v∗ that satisfies P{Q∗(~U) = i} = ri,

where the opportunistic policy is

Q∗(~U) = argmax
i

(Ui + v∗i ). (3.2)

In the argmax above, we break ties probabilistically by picking a user i among those

that achieve the maximum above with a certain probability.

Note that ~v∗ is not unique. There are N components but only N − 1 independent

constraint equations: P{Q(~U) = i} = ri, for i = 1, · · · , N − 1, and P{Q(~U) = N} =

1 −
∑N−1

i=1 ri is a linear combination of the first N − 1 equations, we can simply set

vN = 0.

The policy Q∗ defined in (3.2), which represents our opportunistic scheduling

policy, is optimal in the following sense.

Proposition 1 The policy Q∗ is a solution to the problem defined in (3.1); i.e., it

maximizes the average system performance under the temporal fairness constraint.

For a proof of the above proposition, see Appendix A.1. The parameter ~v∗ is the

“offset” used to satisfy the temporal constraint. Under this constraint, the scheduling

policy schedules the “relatively-best” user to transmit. User i is the “relatively-best”

user if Ui + v∗i ≥ Uj + v∗j for all j. In a special case where v∗j = 0 for all j, the

scheduling policy reduces to Q(~U) = argmaxiUi; i.e., always schedules the user with

the largest performance value to transmit.

Proposition 2 If the performance values of different users are independent, then

E
(
Ui1{Q(~U)=i}

)
≥ riE(Ui),

where E
(
1{Q(~U)=i}

)
= ri.

For a proof of this proposition, see Appendix A.2. Note that E(Ui1{Q(~U)=i}) is the

average performance of user i of the opportunistic scheduling policy and riE(Ui) is

the performance of a non-opportunistic scheduling scheme (e.g., round-robin). This
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proposition studies the individual performance of each user. If users’ performance val-

ues are independent of each other, every user will get the same or better performance

in the opportunistic scheduling scheme than in round-robin.

3.2.3 Parameter Estimation

Basically, the opportunistic scheduling policy is given by

Q∗(~U) = argmax
i

(Ui + v∗i ),

where the v∗i s are parameters determined by the distribution of ~U . In practice, this

distribution is unknown, and hence we need to estimate the parameters v∗i , for i =

1, · · · , N − 1. Figure 3.1 shows a block diagram of a practical scheduling procedure

that incorporates on-line estimation of these parameters.

Channel

Measure Apply

Policy

Q(U)

Update
v*

U

i=1,2,...,N

i
Estimate

Performance
     Value

Fig. 3.1. Block diagram of the scheduling policy with on-line parameter estimation

In this section, we focus on the block that implements the on-line estimation of

the parameters v∗i , i = 1, · · · , N − 1, labeled “Update v∗” in Figure 3.1. We use a

standard stochastic approximation algorithm to estimate ~v∗ (the vector of the v∗i ).

We first explain intuitively the idea of the stochastic approximation algorithm used

here. For a systematic and rigorous study of stochastic approximation algorithms,

see [62, 63]. Suppose we want to solve the root-finding problem f(x∗) = 0, where

f is a continuous function with one root x∗ (both x∗ and f(x∗) are vectors of the
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same dimension). If we can evaluate the value of f(x) at any x, then we can use the

iterative algorithm

xk+1 = xk − akf(xk),

which will converge to x∗ as long as the step size ak is appropriately chosen; e.g.,

ak = 1/k. Suppose that we cannot obtain exactly the value of f(xk) at xk, but

instead we only have a noisy observation gk of f(xk) at xk; i.e., gk = f(xk)+ek where

ek is the observation error (noise). In this case, it is well-known that if E(ek) = 0

(i.e., the mean of the observation error is zero), then the algorithm

xk+1 = xk − akgk,

converges to x∗ with probability 1 under appropriate conditions on ak and f (see,

e.g., [62, 63]).

We use a stochastic approximation algorithm to estimate ~v∗. For this, note that

we can write ~v∗ as a root of the equation f(~v∗) = 0, where the ith component of f(~v∗)

is given by

fi(~v
∗) = P{Q∗(~U) = i} − ri, i = 1, · · · , N − 1

and

Q∗(~U) = argmax
i

(Ui + v∗i ).

We use a stochastic approximation algorithm to generate a sequence of iterates

~v1, ~v2, · · · that represent estimates of ~v∗. Each ~v defines a policy Qk given by

Qk(~U) = argmax
i

(Ui + vki ).

To construct the stochastic approximation algorithm, we need an estimate gk of f(~vk).

Note that although we cannot obtain f(~vk) directly, we have a noisy observation of

its components:

gki = 1{Qk(~U)=i} − ri, i = 1, · · · , N − 1.

The observation error in this case is

eki = gki − fi(~v
k) = 1{Qk(~U)=i} − P{Q

k(~U) = i},
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and thus we have E(eki ) = 0. Hence, we can use a stochastic approximation algorithm

of the form

vk+1
i = vki − a

k
(
1{Qk(~U)=i} − ri

)
,

where ak = 1/k. For the initial condition, we can set v1
i to be 0, or some estimate based

on the measurement history. For the above algorithm, following the standard proof

of [62], we can show that {vki } converges to v∗i with probability 1. Furthermore, to

accelerate the convergence and to reduce the range of the fluctuation of the stochastic

approximation algorithm, we can use the standard technique of averaging (see, e.g.,

[63]):

v̄i
k =

(
1−

1

k

)
v̄i
k−1 +

1

k
vki .

Simulations show that with the stochastic approximation algorithm, vki converges to

~v∗ relatively quickly.

When Uis are not continuous random variables, there may be a “tie” case. Specif-

ically, P{Ui+v∗i = maxj 6=i(Uj+v
∗
j )} > 0, for some i, we break ties probabilistically by

picking a user i among those that achieve the maximum above with a certain prob-

ability. Theoretically, vki will converge to v∗i and we should estimate the tie-break

probability. In practice, this “tie-break” can be handled by the adaptive nature of

stochastic approximation. In this case, vki fluctuates around v∗i within a small range.

The idea is: when vki is getting larger, P{Q = i} > ri, hence, vki will be dragged

down and so on. Simulations show that stochastic approximation works well in the

case with “tie-break”.

As we will see in Section 3.5, simulations results show that the system performance

obtained in our simulation is very close to that of the true optimal value, which implies

that stochastic approximation works well in our situation.

3.3 Implementation Considerations

So far, we have described our scheduling policy, proved its optimality (in the

appendix), and addressed the problem of estimating the parameter values needed for
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the policy. In this section, we explore some implementation considerations for our

scheduling policy.

In our scheduling policy, the base station needs to obtain information of each

user’s performance value at a given time-slot to make the scheduling decision. The

performance value of a user can be estimated either by the user or by the base station,

based on the channel condition and/or measurements from previous transmissions.

For the downlink case, a user could measure the received signal power level (from the

user’s base station) and the interference power level. The user could then calculate the

performance value of the time-slot based on the channel condition and other factors

(such as power consumption). For example, suppose a user’s performance is defined

as its throughput, which is an S-shape function of the SINR, as shown in Figure 2.1.

Based on the estimated SINR, the user can then obtain its performance value. For

the uplink case, the base station could estimate the user’s channel condition based

on the received signal from the user. Assuming the base station knows the form of

the performance value for each user (i.e., how the performance value depends on the

SINR and/or other factors), the performance value could then be calculated by the

base station.

If the performance value is estimated by the user, this information needs to be sent

to the base station, which can be accomplished in several ways. For example, each

user could maintain a small signaling channel with the base station. Alternatively, the

required information could be piggybacked over the user’s acknowledgment packets.

As mentioned before, the length of a time-slot in our scheduling policy can be

different from an actual time-slot of the physical channel. The length of a scheduling

time-slot depends on how fast the channel condition varies and how fast we want to

track the variation. The usual tradeoff between accuracy and signaling overhead exists

here. Specifically, more frequent updating provides more accurate tracking of varying

channel conditions, but incurs higher signaling costs. In practice, to decrease signaling

costs, a user can update its information only when the change in the performance
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value is larger than a certain threshold. Furthermore, it is not necessary for all users

to update at the same time. Note that we ignore propagation delay in the dissertation.

In the following we summarize our scheduling procedure, which incorporates the

on-line parameter estimation algorithm described in the last section. As mentioned

before, the initial value of ~v∗ can be set to ~0 or some estimate based on history

information. At each time-slot k = 1, 2, · · ·, the system performs the following steps:

1. Estimate Uk
i ;

• Uplink: the base station estimates each user’s channel condition and cal-

culates the values of Uk
i , i = 1, · · · , N ;

• Downlink: user i measures its channel condition, calculates Uk
i , and in-

forms the base station;

2. The base station decides which user should be scheduled to transmit in the

time-slot based on the scheduling policy:

Qk(~Uk) = argmax
i

(Uk
i + vki );

3. The scheduled transmission takes place;

• Uplink: the base station broadcasts the ID of the selected user and the

selected user transmits in the time-slot.

• Downlink: the base station transmits to the selected user;

4. The base station updates the parameter vector ~vk+1 via

vk+1
i = vki − a

k
(
1{Qk(~Uk)=i} − ri

)
;

For the stationary case, we set ak = 1/k. For the nonstationary case, we set ak

to a small constant to track system variations.

Note that the computation burden above is O(N) per time-slot, where N is the

number of users sharing the channel (usually on the order of tens), which suggests

that the procedure is easy to implement in practice.
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3.4 Time-Fraction Assignment

Recall that our opportunistic scheduling scheme assumes a given temporal fairness

requirement. The temporal fairness constraint r1, . . . , rN represents a prespecified

time-fraction assignment. In the following, we describe three time-fraction assignment

schemes, which approach the problem from different viewpoints.

User bidding: Suppose mi is the amount of money that user i is willing to pay

per unit time to access the wireless resources. The network then assigns time-

fractions to users in proportion to their willingness to pay:

ri =
mi∑N
j=1mj

.

Hence, the more a user is willing to pay, the higher the fraction of the resources

assigned to the user.

Fair sharing: If there are N users in the system, each user is assigned ri = 1/N ;

i.e., each user receives the same share of resources. This scheme provides fair

resource sharing assuming users are homogeneous. We can extend this scheme to

the multi-class case as follows. Suppose there are L classes of users, where each

class has li active users, and an associated weight wi reflecting the importance

and/or resource requirement of this class. Then the time-fraction assignment

for a user in class i is:

ri =
wi∑L

j=1wjlj
.

Bias sharing: The philosophy here is to allocate resources to users in proportion to

their expected performance values. The corresponding time-fraction assignment

is given by

ri =
E(Ui)∑N
j=1E(Uj)

.

This scheme clearly favors users with high performance values, but at the same

time does not totally ignore the requirement of users with poor performance

values.
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3.5 Simulation Results

In this section, we present numerical results from computer simulations of our

scheduling scheme. The distinctive feature of our scheduling policy is that it exploits

time-varying channel conditions—the policy dynamically decides which user should

be scheduled to transmit in a time-slot based on users’ current performance values.

For the purpose of simulations, we assume that the time-fraction assignment is done

using fair sharing, i.e., the total resources are evenly divided among the users. Note

that the policy that shares the resource (time in this case) in this manner, but does not

exploit channel conditions is the well known round-robin scheme. Hence, to evaluate

the performance gain of our dynamic and opportunistic assignment of transmissions,

we compare the performance of our policy with that of the round-robin scheme. We

will show three sets of simulation results. The first one is to simulate an actual

cell and to show how much improvement our scheduling scheme will have. We then

show how estimation errors affect the scheduling scheme and how stochastic approx-

imation works in a continuous case. The last simulation is to show how stochastic

approximation works in a “tie-break case”.

3.5.1 An Actual Cell

Our simulation environment is described in the following. We consider a multi-cell

system consisting of a center cell surrounded by hexagonal cells of the same size. The

base station is at the center of each cell and simple omni-directional antennas are used

by mobiles and base stations. We focus on the performance of the downlink of the

center cell because downlink communication is more important for data services. The

frequency reuse factor is 3 and co-channel interference from the first-tier neighboring

cells is taken into account. We assume that each cell has a fixed number of frequency

bands. Usually there are tens of users in each cell sharing different frequency bands.

We focus on one frequency band, which is shared by 25 users in the central cell. The



- 41 -

scheduling policy decides which user should transmit in this frequency band at each

time-slot. The users have exponentially distributed “on” and “off” periods.

We model user mobility as follows. The velocities of mobile users are independent

random variables uniformly distributed between the minimum (2km/h) and the max-

imum velocity (100km/h). The directions of mobile users are independent random

variables uniformly distributed between 0 and 2π. A mobile user chooses its velocity

when it becomes active and the velocity is fixed during that on-period. The direction

of a mobile user changes periodically. When a user becomes active, its location is

uniformly distributed in the cell. If a user moves out of the border, we assume that

it reappears at a point that is symmetric to the exiting point about the center base

station.

As mentioned earlier, for our simulation experiments, we use the fair sharing

time-fraction assignment scheme. When the number of active users changes, i.e.,

when an active user becomes nonactive or vice versa, we update the temporal fairness

requirement ri for all active users. In other words, if N is the number of active users

sharing the channel in the central cell, we set ri = 1/N , for all i.

The channel gains of the users are mutually independent random processes de-

termined by the sum of two terms: one due to path (distance) loss and the other

to shadowing. To be conservative, we assume, in the simulation, that the effects of

fast multipath fading are averaged out via interleaving, diversity, etc., because cur-

rent standards have not specified faster than frame-rate adaptation. However, we

should note that fast fading is considered in the Qualcomm/HDR proposal [25], and

if fast fading could be tracked, our scheme could provide even higher performance

improvements than shown here.

We adopt the path-loss model (Lee’s model) and the slow log-normal shadowing

model in [32], as discussed in Section 2.1. Specifically, the channel gain g(k) (in dB)

at time-slot k between an arbitrary user at a distance d from a base station is given

by:

g(k) = lp(k) + s(k).
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where lp(k) and s(k) are terms representing path-loss and shadowing, respectively.

The path loss lp(k) (dB) is obtained as

lp(k) = K + 38.4 log10(d(k))− α0,

where α0 is a correction factor used to account for different base station and mobile

station (MS) antenna heights, transmit powers, and antenna gains, and K = 103.41

is a constant in the simulation assuming that the transmission power of a base station

is fixed at 10W.

Shadowing is the result of the transmitted signal passing through or reflecting off

some random number of objects such as buildings, hills, and trees. The shadowing

term s(k) (in dB) is usually modeled as a zero-mean stationary Gaussian process with

autocorrelation function given by

E(s(k)s(k +m)) = σ2
oξ
vT/D
d ,

where ξd is the correlation between two points separated by a spatial distance D

(meters), and v is velocity of the mobile user. In our simulation, we use a value of

σo = 4.3 dB, corresponding to a correlation of 0.3 at a distance of 10 meters, as

reported by Gudmundson [34].

The parameters of the simulation and their values are summarized in Table 3.1.

In the following, we describe the simulation procedure in detail. At the beginning

of the simulation, we set ~v1 = ~0. We maintain an ordered list of users in the system.

Let N be the number of active users. Each active user has a temporal requirement

of 1/N . At each time-slot k = 1, 2, · · ·, the following steps are simulated:

1. If user i is active, we generate Uk
i . In our simulation, a user’s performance is a

function of SINR, as shown in Figure 3.2. Each user measures the received power

level from the central base station, and the interference power level received

from neighboring cells. Based on these measurements, the user calculates the

SINR, and thus the corresponding performance value as a function of SINR.

Figure 3.2 shows the forms of the performance values used by different users.
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Cell radius 1000m

Propagation environments North American suburb

Frequency 1845 MHz

Distance Exponent (β) 3.84

Height of base station antenna 38.4m

Height of MS antenna 1.5m

base station transmission power 10W

base station antenna gain 6dB above dipole gain

MS antenna gain 0dB above dipole gain

Shadowing standard deviation 4.3dB

Shadowing correlation distance 10m

Background noise power 120dBm

Minimum speed 2km/h

Maximum speed 100km/h

Period for direction change 127 steps

Sample step size 10ms

Mean duration of on-period 5000 steps (50s)

Mean duration of off-period 2500 steps (25s)

Stochastic approximation step 0.01

Table 3.1
Simulation parameters and values
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To avoid crowding the figure, we only show the performance functions of 8 users.

The performance values of users 1 and 2 are step-functions of their SINR, and

user 2 has a higher threshold than user 1. The performance values of users

3–4 are linear functions of their SINR (in dB), with different slopes. Users 5–8

have performance values that are S-shape functions of their SINR, with different

parameters. Totally, there are 4 users with step-functions, 6 users with linear

functions, and 15 users with S-shape functions in the simulation.
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Fig. 3.2. Users’ performance values as a function of SINR.

2. Active users transmit their values of Uk
i to the base station through a signaling

channel.

3. Based on the vector of performance values ~Uk, the base station decides which

user to schedule in the time-slot:

Qk(~Uk) = argmax
i∈A

(Uk
i + vki ),

where A is the index set of all active users.
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4. If user j = Q(~Uk) is the selected user, then the base station transmits to user

j in the time-slot k. The system receives a performance “reward” equal to the

performance value Uk
j .

5. In the round-robin scheduling scheme, we set J to be the index of the next

active user in our ordered list of users, and let user J transmit. The system

receives a performance “reward” equal to the performance value Uk
J of user J .

6. The base station updates ~vk+1 for all active users as follows:

vk+1
i = vki − a

k
(
1{Qk(~Uk)=i} − ri

)
.

Because we are simulating a non-stationary system, we set ak = 0.01 to track

changes in the system. In general, the larger the value of ak, the faster that

vki tracks v∗i , but at the same time the larger the fluctuation of vki around the

value of v∗i .

The system performs the above procedure for every time-slot. Whenever the

number of active users changes, the base station updates the temporal fairness re-

quirements according to the fair sharing scheme, and the value of ~vk at that time is

used as the initial value of the on-line parameter estimation procedure in the new

system state.

Figure 3.3 shows the results of our simulation experiment. In the figure, the x-

axis represents the users’ IDs. For each user, we compare the average performance

in our opportunistic scheduling policy (the first bar) with that of the round-robin

(RR) policy (the second bar). We can see that in every case, our opportunistic policy

significantly outperforms the round-robin policy, with gains of 20% to 150%. The

amount of improvement varies from user to user because different users have different

performance functions. The third bar in the figure is the ratio of the total number

of slots assigned to each user in our opportunistic scheme to that of the round-robin

scheme, which was set equal to that required by the temporal fairness constraint.

For all users, the third bar is virtually identical to 1. Hence, our scheduling scheme
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satisfies the temporal fairness constraint, which indicates that our stochastic approx-

imation algorithm works well in the simulation experiment even in the nonstationary

case.
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Fig. 3.3. Comparison of the opportunistic scheduling policy with the round-robin
scheme. In the figure, Sn is the number of time-slots assigned to user i in the

optimal scheduling policy and Sr is the number of slots assigned to user i in the
round-robin scheme.

3.5.2 Estimation Error

We next show results for an experiment designed to evaluate the impact of our on-

line parameter estimation procedure and the sensitivity of our opportunistic schedul-

ing scheme to estimation errors. There are two parts of estimation errors: the pa-

rameter estimation error (i.e., the difference between ~v∗ and its estimate ~vk) and the

performance-value estimation error (i.e., the difference between Ui and its estimate

Ûi).



- 47 -

ID mean autoreg. coefficient stand. deviation σin

1 10 0.3 10.8 20

2 10 0.4 6.9 16

3 10 0.5 4.0 12

4 10 0.6 2.5 10

Table 3.2
Gaussian Process Parameters

We generate four time-correlated Gaussian processes, representing the

performance-value sequences for four users. Let ηi be the auto-regression correla-

tion factor of user i. We have

Uk+1
i = ηiU

k
i + (1− ηi)n

k
i ,

where {nki } is a sequence of i.i.d. Gaussian random variables with mean value of 10

and standard deviation σin, as shown in Table 3.2. We also display in Table 3.2 the

means and standard deviations of the Gaussian processes for the four users. Each

user has exponentially distributed “on” and “off” periods, with mean value 5000 and

2500 time-slots, respectively.

We compare the results for four different cases.

• Ideal case; i.e., Q∗ with known threshold ~v∗ assuming exact values of Ui are

known;

• Estimated thresholds assuming exact values of Ui are known;

• Estimated thresholds with estimated value of Ui; i.e., Ûi = Ui + ei, where ei is

the estimation error, ei ∼ N(0, 4), and eis are independent;

• Estimated thresholds with estimated value of Ui; i.e., Ûi = Ui + ei, where ei is

the estimation error, ei ∼ N(0, 8), and eis are independent.
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Figure 3.4 shows the average performance from the above four cases. The first

bar is the normalized performance value under the ideal condition; the second bar is

that of estimated thresholds with ideal measurements (i.e., the exact value of Ui is

known); the third and fourth bars represent the normalized performance with different

estimation errors; i.e., Ûi = Ui + ei, where ei ∼ N(0, 4) and ei ∼ N(0, 8) respectively.

We can see in Figure 3.4 that the performance of both the optimal policy Q∗ and

our policy Qk with estimated parameters are quite comparable, and are significantly

higher than that of the round-robin policy. This suggests that our on-line parameter

estimation scheme works well and that the parameter estimation errors present do

not significantly degrade the performance of the policy relative to the optimal policy.

Moreover, the performance gains appear to be related to the standard deviation:

the higher the standard deviation, the larger the performance gain. Note that in

the round-robin scheme, the performance levels for all users are all approximately

equal to the mean of the Gaussian processes (which is the mean performance value).

This is to be expected because the round-robin scheme allocates an equal fraction

of time-slots to each user, regardless of the channel conditions. Our opportunistic

approach takes advantage of favorable transmission conditions, thereby leading to

average performance values that are far above the mean of the Gaussian processes.

The third bar shows the average performance of users with estimation error ei ∼

N(0, 4). With this estimation error, the average performance is still close to that

of the optimal case. When the estimation error increases, it is not surprising that

the average performance decreases. The fourth bar shows a situation with very large

estimation errors, especially for user 4. However, even in this case, our scheduling

scheme still outperforms that of round-robin. Hence, the opportunistic scheduling

scheme is robust to estimation errors.

Figure 3.5 shows the ratio of the time-fractions obtained by our policy Qk to that

of the round-robin policy (which, as pointed out before, are equal to the prespecified

values). As we can see, our scheme satisfies the temporal fairness constraints very

well, even in the case with very large estimation errors.
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Fig. 3.4. Average performance value, normalized over round-robin.
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Fig. 3.5. Fairness, normalized over round-robin
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Lastly, Figure 3.6 shows the estimated threshold of a user when the system status

changes (i.e., some user becomes active or some user becomes inactive).
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Fig. 3.6. Estimated threshold when the number of users changes.

3.5.3 Tie-break Case

In this simulation, we generate four discrete random variables to represent the

performance values of four users. The distribution functions of these four random

variables are shown in the following.

U1 =

 1 with prob. 0.5

2 with prob. 0.5
U2 =

 1 with prob. 0.5

3 with prob. 0.5

U3 =

 2 with prob. 0.5

3 with prob. 0.5
U4 =

 2 with prob. 0.5

4 with prob. 0.5
,

where Uis are independent. It is trivial to show that ~v∗ = [2, 1, 1, 0].

A tie-break case occurs. For example, when U1 = 1, U2 = 3, U3 = 2, U4 = 4,

U2 + v∗2 = U4 + v∗4 = max(Ui + v∗i ). In this case, with probability 0.5, we should

let user 2 transmit, and with probability 0.5, we should let user 4 transmit. In

general, P{Ui+v∗i = maxj 6=i(Uj +v∗j )} > 0, for some i, we break ties probabilistically
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ID TRR Topt Test Rf

1 1.5 1.875 1.874 1.002

2 2 3 3.000 1.004

3 2.5 2.875 2.870 1.002

4 3 4 4.000 0.992

Table 3.3
Comparison of the average performance of scheduling policy Q∗ (with known ~v∗),

Qk (with estimated ~vk), and round-robin.

by picking a user i among those that achieve the maximum above with a certain

probability. Theoretically, vki will converge to v∗i and we should estimate the tie-break

probability. In practice, this “tie-break” can be handled by the adaptive nature of

stochastic approximation. In this case, vki fluctuates around v∗i within a small range.

The idea is: when vki gets larger, P{Q = i} > ri, hence, vki will be dragged down and

so on. This simulation is designed to test the stochastic approximation algorithm in

a tie-break case.

The simulation is run for 2,000 time-slots with initial value ~v∗ = 0. Table 3.3 shows

the average performance value and fairness obtained from the simulation. We simulate

our scheduling procedure where we use our on-line parameter-estimation algorithm

to estimate ~v∗ based on measurements. The average performance obtained is shown

as Test in Table 3.3 and the optimal performance (with known ~v∗ and know tie-break

probabilities) is noted as Topt. As a benchmark comparison, we also simulated the

average performance of the round-robin policy, represented by TRR Table 3.3. In the

table, Rf is the ratio of the number of time-slots the user gets in the simulation over

the number of time-slots the user should get according to its fair share. We can see

Topt and Test are close and Rf is close to one. Furthermore, in Figure 3.7, we can see

that vki converges to v∗i fairly fast. Hence, stochastic approximation works well in this

case.
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Fig. 3.7. Convergence of the threshold values in a discrete case

In this section, we present simulation results of our opportunistic scheduling

scheme under various conditions. It shows that our scheduling scheme works well

in the case where stationarity is not guaranteed, and improves system performance

significantly, even in the presence of estimation errors.

3.6 Short-term Performance

The scheduling scheme described thus far meets the long-term performance re-

quirements of users; i.e., the long-term average of the fraction of time-slots assigned

to a user is guaranteed. However, with such a scheme, it is possible that a user could

be starved for a long time (say, more than a few seconds), which may be undesirable

for certain users. Usually, a user may also have the demand for good “short-term”

performance — the user expects that the amount of service obtained within a rela-

tively short time interval be close to it amount it should get.

In the GPS (Generalized Processor Sharing) model [29], each flow is treated as a

fluid flow. Each flow i is given a weight wi, and for any time interval [t1, t2] during
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which both sessions i and j are continuously backlogged, the resource granted to each

flow i, Gi(t1, t2), satisfies the following property:∣∣∣∣Gi(t1, t2)

wi
−
Gj(t1, t2)

wj

∣∣∣∣ = 0. (3.3)

This means that a user gets its fair share of resource during any time interval. There

is an alternative to (3.3). Let t0 be a starting point such that from time t0 onwards,

both sessions i and j are continuously backlogged. It is clear that the satisfaction of

(3.3) is equivalent to: ∣∣∣∣Gi(t0, t)

wi
−
Gj(t0, t)

wj

∣∣∣∣ = 0 (3.4)

for all t > t0, and users i and j are both continuously backlogged during the time

interval [t0, t].

We extend the above concept to a time-slotted system, where one time-slot is

exclusively used by one user. Let wi be the weight of user i and ri(k) be the temporal

fairness requirement of user i at time k. Note that when the set of active users change,

ri(k) may change. For example, following the tradition in GPS, ri(k) can be set as:

ri(k) =
wi∑

j∈Ak
wj
,

where Ak is the set of active users at time k. User i is guaranteed a minimum share

of the resource wi/
∑

j∈Awj during its active period, where A is the set of all users.

Let ki be the time that user i becomes active. Suppose that during the time

interval [k0, k], both users i and j are continuously active, where k0 = max(ki, kj). Let

Si(k0, k) be the number of time-slots assigned to user i from k0 to k. An approximation

of (3.4) is: ∣∣∣∣Si(k0, k)

wi
−
Sj(k0, k)

wj

∣∣∣∣ ≤ Γ,

where Γ ≥ 0 is a constant.

Let Fi(ki, k) be the counter of the resource entitled of user i; i.e., the number of

time-slots that should be assigned to user i during the time interval [ki, k]:

Fi(ki, k) =
k∑

t=ki

ri(t) =
k∑

t=ki

wi∑
j∈At

wj
, (3.5)
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where At is the set of active users at time t. It is obvious that the Fi(ki, k) satisfy

(3.4) and hence (3.3) at each discrete time k. Note that Fi(ki, k) may not be an

integer, and thus may not be achievable when a time-slot is exclusively used by one

user.

We use Fi(ki, k) as a benchmark. To improve the short-term performance, we want

Si(ki, k) to be close to Fi(ki, k). We modify our previous opportunistic scheduling

scheme in the following way. Let

∆k
i = Fi(ki, k)− Si(ki, k).

If ∆k
i > 0, then user i is “lagging” (i.e., the user gets less resource than it should

get), and if ∆k
i < 0, then user i is “leading”. The idea is to increase the probability

of transmission of a lagging user and decrease the probability of transmission of a

leading user. Hence, a direct modification of our scheduling policy is the policy Bk

given by

Bk(~Uk) = argmax
i=1,···,N

(Uk
i + v∗i )

(
∆k
i

α
+ β

)
, (3.6)

where min v∗i = 0, and α and β are positive constants. When the value of α is smaller,

the effect of ∆k
i is more significant, and thus the short-term performance is better.

The value of β acts as a threshold — a user is forbidden to transmit if the amount

by which it leads is greater than βα.

We next consider the case where there are changes in the set of active users. When

a new user comes into the system, the system adjusts the ri for all users, and the

new user j starts a counter Fj(kj, k) for its resource share. When a user leaves the

system, the system adjusts the ri and the counters of fair share for other active users.

Suppose user i leaves the system at time k and user i has been served with Si(ki, k)

time-slots. Recall that ∆k
i = Fi(ki, k) − Si(ki, k); i.e., user i has ∆k

i time-slots less

than its share. Because the user is gone, we cannot enforce Si(ki, k) to be close to

Fi(ki, k) anymore. This discrepancy has to be absorbed by other active users. We

update the counter Fj(kj, k) of any active user j by replacing the value of Fj(kj, k)
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by Fj(kj , k) + ∆k
i /Nact, where Nact is the number of active users. In other words,

the discrepancy is evenly distributed among all active users. Note that this way of

handling users’ departures is intuitive, but not necessarily optimal. Actually, it is

challenging to even define a good optimal criterion in the situation where there exists

the tradeoff between short-term performance and the overall system performance.

We use the same simulation setup as in 3.5.2. Four Gaussian random processes are

used to represent the performance-value sequences of four users, and their parameters

are shown in Table 3.2. The simulation runs for 1,000,000 time-slots (while all four

users have exponentially distributed on-offs). Next, we show two metrics for the

short-term performance for user 4, which has an auto-regression coefficient of 0.6.

Note that user 4 has the worst short-term performance among all four users because

it has the highest correlation across time.

The first metric is the starving-time, defined as the time interval between two

contiguous time-slot assignments when the user is active. Note that starving-time

is closely related to the delay a user experiences. Figure 3.8 shows the starving-

time histogram. In the legend, MOS represents the modified opportunistic scheduler

defined in (3.6); OSI is the ideal opportunistic scheduler with known threshold ~v∗;

OSE is the opportunistic scheduler using stochastic approximation to estimate the

threshold; and IND represents the numerical result when a user’s performance values

at different time-slots are independent. If a user’s performance values are independent

across time, the starving-time is binomially distributed; i.e., P{starving-time = n} =

(1 − ri)
(n−1)ri, where ri is the temporal fairness requirement of user i. Because

user 4’s performance value is correlated across time, compared with the IND case, the

probability of a long starving-time of user 4 in the OSI and OSE cases, which do not

consider the short-term performance, is larger, but it is also dropping exponentially.

Furthermore, the probability that a large starving-time occurs in MOS is much smaller

than that of OSI and OSE, and it is also smaller than that of IND. Hence, the chance

that a user is starved decreases and the short-term performance is improved.



- 56 -

The second metric of the short-term performance is defined as

E[(Si(k, k + ∆m)− Fi(k, k + ∆m))2]

∆m
,

where ∆m is the length of the window by which we measure the discrepancy between

the fair share Fi(k, k+∆m) and Si(k, k+∆m) while user i is active during the interval

[k, k+∆m]. Because E[Si(k, k+∆m)] = Fi(k, k+∆m), this metric is the variance of

Si(k, k+ ∆m) normalized over the window size ∆m. The discrepancy should be zero

in the Fluid Fair Model and is no larger than 1 in the round-robin scheduling scheme.

In Figure 3.9, we show that MOS results in noticeable decrease of the normalized

variance.
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Fig. 3.8. Starving-time histogram

We should mention here that the modified scheduling scheme does not decrease the

average performance significantly. In this simulation, OSI outperforms round-robin by

25% in terms of the average performance of user 4, and MOS outperforms round-robin

by 22% while satisfying the long-term resource allocation requirement. Overall, the

system performance obtained in MOS is only about 3% less than that of OSI, while

both outperforming the round-robin by over 60% and satisfying the long-term resource
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Fig. 3.9. Normalized variance of discrepancy as a metric of the short-term
performance.

allocation requirement. Hence, MOS improves the short-term performance without

dramatically decreasing the system throughput. In general, the larger the time-

correlation, the worse the short-term performance, and the greater the improvement

in the short-term performance, the larger the loss in system performance.

One closely related problem is to be able to handle users with explicit delay re-

quirements, such as audio and video. It is a challenging problem to schedule users

opportunistically while satisfying the delay requirements of certain users. One pos-

sible solution is to extend the current scheduling scheme in the following way. Each

user has a due-time known by the base station. The due-time of a user is the deadline

of the first packet in the user’s queue. If a user has no delay requirement, its due-

time is set to be ∞. Suppose different users have different due-times. (If two users

have the same due-time, we randomly pick one and make its due-time the time-slot

before its actual due-time.) We then adjust the transmission probability of a user

of according to its due-time. The closer the due-time, the higher the probability of

its transmission. When a user is at its due-time, we assign the time-slot to this user
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with probability 1. If we know the distribution functions of users’ performance val-

ues, it is possible to determine how large the transmission probability should be (as a

function of its and other users’ due-times) numerically. Otherwise, these transmission

probabilities might be determined experimentally.

3.7 Conclusion

In this chapter, we investigate an opportunistic transmission-scheduling with tem-

poral fairness constraints as a case study. Given a temporal fairness requirement,

the scheduling policy maximizes the average system performance. In our model,

each user’s performance value is a stochastic process, reflecting the time-varying

performance that results from randomly-varying channel conditions. The users’

performance-value processes can be arbitrarily correlated, both in time and across

users. We establish the optimality of our opportunistic scheduling policy. We also

provide a scheduling procedure that includes an on-line parameter-estimation algo-

rithm to estimate parameter values used in the scheduling policy. Our scheduling

algorithm has a low computational burden, which is important for on-line implemen-

tation. Via simulation, we illustrate the performance of our scheduling policy, showing

significant performance gains over the round-robin policy. Our simulation results also

show that our scheme works well for the case of nonstationary performance-value

sequences, and is robust to estimation errors. Finally, we study a heuristic scheme to

improve short-term performance.

The case study presented in this chapter is complete in the following sense: it

includes an optimal scheduling policy, a parameter-estimation algorithm, implemen-

tation considerations and procedures, numerical results, consideration for estimation

errors, and a heuristic scheme to improve short-term performance. Some of these

issues, namely parameter estimation, implementation procedure, and considerations

of estimation error and short-term performance, are common among other scheduling

problems, which will be discussed in the next chapter.
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4. A UNIFIED FRAMEWORK OF OPPORTUNISTIC

SCHEDULING

In this chapter, we present a unified framework for opportunistically scheduling user

transmissions to exploit the time-varying channel conditions in wireless communi-

cation systems. We consider a time-slotted system, such as TDMA or time-slotted

CDMA. We use a stochastic model to capture the time-varying and channel-condition-

dependent performance of each user. Specifically, {Uk
i } is a stochastic process associ-

ated with user i, where Uk
i is the level of performance that would be experienced by

user i if it is scheduled to transmit at time k. The value of Uk
i measures the “worth”

or “utility” of time-slot k to the user i, and is in general a function of its channel

condition. We assume that {Uk
i } is stationary and ergodic, and Uk

i is nonnegative

and bounded. We use the notation ~U = (U1, · · · , UN ), where Ui is a random variable

representing the performance value of user i at a generic time-slot. (Note that the

stationary assumption does not preclude correlations across users or across time.)

Our goal in opportunistic scheduling is to maximize the average system performance

under certain QoS requirements. The generic scheduling problem is as follows: given

~U (the vector of users’ performance values), determine which user should be scheduled

to transmit in the given time-slot, under the given QoS constraints.

The framework enables us to investigate different categories of scheduling problems

involving two fairness requirements (temporal fairness and utilitarian fairness) and

a minimum-performance requirement. We provide optimal scheduling solutions, and

study the asymptotic behavior of our opportunistic scheduling schemes. We will also

show how the case study presented in Chapter 3 and some previous work by other

researchers directly fit into or is related to this framework (e.g., [47, 51, 64, 41]).
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The chapter is organized as follows. In Section 4.1, we introduce a scheduling

problem with temporal fairness requirements, which is a generalization of the prob-

lem discussed in Chapter 3, and provide an optimal solution. Then, we present a

utilitarian fairness scheduling problem and its optimal solution in Section 4.2. Fi-

nally, a scheduling problem with minimum-performance guarantees and its solution

are presented in Section 4.3. We compare different scheduling schemes in Section 4.4,

and discuss an asymptotic result on opportunistic scheduling schemes in Section 4.5.

We also show that how our results can be generalized to nonstationary policies and

under more general conditions in Section 4.6. In Section 4.7, we briefly discuss the

parameter estimation. In Section 4.8, we provide simulation results to illustrate the

performance of the studied scheduling schemes, and present the conclusion in Sec-

tion 4.9.

4.1 Temporal Fairness Scheduling Scheme

It is important to note that fairness criteria are central to scheduling problems in

wireless systems. Without a good fairness criterion, the system performance can be

trivially optimized by, for example, letting a user with the highest performance value

to transmit. This may prevent “poor” users (in terms of either channel conditions

or money) from accessing the network resource, and thus compromises the desirable

feature of wireless networks: to provide “anytime,” “anywhere” accessibility. In this

chapter, we study two fairness criteria—temporal and utilitarian. In this section,

we focus on the scheduling problem with temporal fairness requirements; we study

utilitarian fairness in Section 4.2.

4.1.1 Problem Formulation

Recall that in Chapter 3, we study a scheduling problem with temporal fairness

constraints; i.e., each user is assigned ri portion of time-slots and
∑N

i=1 ri = 1. We

can further generalize it to give the system more freedom. To elaborate, let ri de-
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note the minimum time-fraction that should be assigned to user i, where ri ≥ 0,∑N
i=1 ri ≤ 1. The new problem is more general, and allows more flexibility in re-

source sharing in that it allows for a minimum amount of fairness in the system.

Note that ε :=
∑

i ri ≤ 1 is a tuning parameter such that the smaller the value of

ε, the less restrictive the fairness constraint, and the greater the opportunity to im-

prove the system performance. One extreme is ε = 1, which is the case studied in

Chapter 3. Another extreme is ε = 0, where the system has the utmost freedom to

maximize the system performance. Our goal is to develop a scheduling policy Q that

exploits the time-varying channel conditions to maximize the total expected system

performance while satisfying the (general) temporal fairness constraint. The problem

can be stated formally as follows:

maximize
Q∈Θ

E
(
UQ(~U)

)
subject to P{Q(~U) = i} ≥ ri, i = 1, 2, · · · , N, (4.1)

where Θ is the set of all scheduling policies.

4.1.2 An Optimal Policy

We define a policy Q∗ as follows:

Q∗(~U) = argmax
i

(Ui + v∗i ), (4.2)

where the v∗i s are chosen such that:

1. mini(v
∗
i ) = 0

2. P{Q∗(~U) = i} ≥ ri for all i

3. For all i, if P{Q∗(~U) = i} > ri, then v∗i = 0.

Proposition 3 The policy Q∗ is a solution to the problem defined in (4.1), i.e., it

maximizes the average system performance under the temporal fairness constraint.
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Proof: Let Q be a policy satisfying P{Q(~U) = i} ≥ ri for all i. Also recall that

v∗i ≥ 0. Hence, we have

E
(
UQ(~U)

)
≤ E

(
UQ(~U)

)
+

N∑
i=1

v∗i (P{Q(~U) = i} − ri)

= E

(
N∑
i=1

Ui1{Q(~U)=i}

)
+

N∑
i=1

v∗i (P{Q(~U) = i} − ri)

= E

(
N∑
i=1

(Ui + v∗i )1{Q(~U)=i}

)
−

N∑
i=1

v∗i ri.

(The notation 1{Q(~U)=i} represents the indicator function of event {Q(~U) = i}.) By

the definition of Q∗, we have
∑N

i=1(Ui+v
∗
i )1{Q(~U)=i} ≤

∑N
i=1(Ui+v

∗
i )1{Q∗(~U)=i}. Thus,

E

(
N∑
i=1

(Ui + v∗i ) 1{Q(~U)=i}

)
≤ E

(
N∑
i=1

(Ui + v∗i ) 1{Q∗(~U)=i}

)
.

Hence,

E
(
UQ(~U)

)
≤ E

(
N∑
i=1

(Ui + v∗i ) 1{Q∗(~U)=i}

)
−

N∑
i=1

v∗i ri

= E
(
UQ∗(~U)

)
+

N∑
i=1

v∗i (P{Q
∗(~U) = i} − ri)

= E
(
UQ∗(~U)

)
,

which completes the proof. �
We can think of the parameter ~v∗ in (4.2) as an “offset” used to satisfy the fairness

requirement. Consider the case where we want to maximize the overall performance

without any QoS requirements. It is straightforward to show that we should al-

ways choose the “best” user (i.e., the user with the maximum performance value)

to transmit in a generic time-slot. In other words, Q(~U) = argmaxi Ui. However,

such a scheme may be unfair to certain users. Hence, to satisfy the fairness require-

ment, the scheduling policy schedules the “relatively-best” user to transmit. User i

is “relatively-best” if Ui + v∗i ≥ Uj + v∗j for all j. If v∗i > 0, then user i is an “unfortu-

nate” user, i.e., the channel condition it experiences is relatively poor. Hence, it has
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to take advantage of some other users (e.g., users with v∗j = 0) to satisfy its fairness

requirement. Thus, to maximize the overall system performance, we can only give

the “unfortunate” users the amount of resource equivalent to their minimum require-

ments. When P{Q∗(~U) = j} > rj for user j, the user gets more than its minimum

requirement—this user cannot take advantage of other users, i.e., v∗j = 0.

The values of v∗i are determined by the distribution of ~U and the values of ri.

In practice, the distribution of ~U is unknown, and hence we need to estimate the

parameters v∗i . Similarly, in the opportunistic scheduling schemes discussed in Sec-

tions 4.2 and 4.3, there are also parameters that need to be estimated. In Section 4.7,

we explain how to use stochastic approximation algorithms to efficiently estimate the

values of these parameters. The algorithm is also based on stochastic approximation

as studied in Chapter 3.

The policy Q∗ maximizes the average system performance even if the users’ perfor-

mance values are arbitrarily correlated, both in time and across users. The following

proposition establishes, under a more restrictive assumption, that each user can be

guaranteed a minimum performance level given the distribution of ~U .

Proposition 4 If the performance values Ui, i = 1, · · · , N , are independent, then for

all i,

E
(
Ui1{Q∗(~U)=i}

)
≥ P{Q∗(~U) = i}E(Ui) ≥ riE(Ui).

An alternative statement of the above result is

E(Ui|Q
∗(~U) = i) ≥ E(Ui).

The proposition is a trivial generalization of Prop. 2. For a proof of the proposition,

see Appendix A.2. Note that E(Ui1{Q∗(~U)=i}) is the average performance value of

user i using our opportunistic scheduling policy, and P{Q∗(~U) = i}E(Ui) is the

average performance of user i when using a non-opportunistic scheduling scheme

where P{Q∗(~U) = i} portion of the resource (i.e., time) is assigned to user i. (A
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non-opportunistic scheduling policy is one that does not use information on channel

conditions to decide which user to transmit.)

The above proposition guarantees, assuming the users’ performance values are in-

dependent, that the average performance of each user in our opportunistic scheduling

scheme will be no worse than that of any non-opportunistic scheduling scheme that

allocates the same share of the resource to the user. Furthermore, each user gets a

guaranteed minimum performance of riE(Ui) because P{Q(~U) = i} ≥ ri. This result

is intuitively appealing. When a user is experiencing good channel conditions, it has

a higher chance to have a maximum value of Ui + v∗i among all users, and thus be

chosen to transmit. When a user is experiencing poor channel conditions, it has less

opportunity to be the relatively-best user and thus to be scheduled. Hence, a user

tends to transmit more often under favorable conditions, resulting in performance

improvement for each user. In this sense, the opportunistic scheduling policy gives all

the users the chance to improve their expected performance. Of course, different users

may experience different levels of improvement. In general, the larger the variability

of a user’s performance value, the greater the improvement.

4.2 Utilitarian Fairness Scheduling Scheme

In the last section, we studied the opportunistic scheduling problem with tempo-

ral fairness requirements. In wireline networks, when a certain amount of resource is

assigned to a user, it is equivalent to granting the user a certain amount of through-

put/performance value. However, the situation is different in wireless networks, where

the amount of resource and the performance value are not directly related (though

correlated). Hence, in this section we describe an alternate scheduling problem that

would ensure that all users get at least a certain portion of the system performance.
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4.2.1 Problem Formulation

Recall that E(Ui1{Q(~U)=i}) is the average performance value of user i using policy

Q, andE(UQ(~U)) =
∑N

i=1E(Ui1{Q(~U)=i}) is the overall performance of the system using

policy Q. Let ai be the minimum fraction of the overall average performance required

by user i, where ai ≥ 0 for all i, and
∑

i ai ≤ 1. Then the optimal opportunistic

scheduling problem based on utilitarian fairness can be written as:

maximize
Q∈Θ

E
(
UQ(~U)

)
subject to E

(
Ui1{Q(~U)=i}

)
≥ aiE

(
UQ(~U)

)
, i = 1, 2, · · · , N, (4.3)

where Θ is the set of all policies. Note that ais are predetermined fairness parameters,

and ε′ =
∑

i ai is a tuning parameter (similar to ε in Section 4.1)—the smaller its

value, the larger the opportunity to improve system performance.

The authors of [51] consider a special case of the above opportunistic scheduling

problem. Specifically, they consider maximizing the minimum weighted performance

of users (i.e., E(Ui1{Q(~U)=i})/βi, where the βis are predetermined weights). This is

then equivalent to setting ai = βi/
∑

j βj in the utilitarian fairness problem defined

by (4.3). In this case, because
∑

i ai = 1, all the inequality constraints are active for

any feasible solution, i.e., the inequality constraints are satisfied with equality.

This problem setting requires fairness in terms of performance values, which, to

some extent, parallels the concept of weighted fair queueing used in wireline networks.

The difference is that the overall capacity here is not fixed; it depends on channel

conditions, the values of ai, and the scheduling policy.

4.2.2 An Optimal Policy

We define a policy Q∗ as:

Q∗(~U) = argmax
i

((κ+ ν∗i )Ui) , (4.4)

where κ = 1−
∑N

i=1 aiν
∗
i , and the ν∗i s are chosen so that:
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1. mini(ν
∗
i ) = 0

2. E
(
Ui1{Q∗(~U)=i}

)
≥ aiE

(
UQ∗(~U)

)
for all i

3. For all i, if E
(
Ui1{Q∗(~U)=i}

)
> aiE

(
UQ∗(~U)

)
, then ν∗i = 0 .

Proposition 5 The policy Q∗ in (4.4) is a solution to the problem defined in (4.3),

i.e., it maximizes the average system performance under the utilitarian fairness con-

straint.

For a proof of the above proposition, see Appendix A.3. Similar to ~v∗ in the last

section, the parameter ~ν∗ in (4.4) can be considered a “scaling” used to satisfy

the utilitarian fairness constraint. The optimal scheduling policy always chooses

the relatively-best user to transmit. In this case, the user i is relatively-best if

(κ+ ν∗i )Ui = maxj
(
κ+ ν∗j

)
Uj , where κ is a constant for all users. As before, if

ν∗i > 0, then user i is an “unfortunate” user, and its average performance value

equals the minimum requirement, i.e., E(Ui1{Q∗(~U)=i}) = aiE(UQ∗(~U)).

Utilitarian scheduling schemes have certain features. First, any policy Q that

satisfies the fairness constraint defined in (4.3) has the property that

ai
1− ε′ + aj

≤
E
(
Ui1{Q(~U)=i}

)
E
(
Uj1{Q(~U)=j}

) ≤ 1− ε′ + ai
aj

,

for i, j = 1, 2, · · · , N. In other words, the utilitarian fairness constraint controls the

maximum discrepancy of performance values among users.

Second, the constraint given in (4.3) ensures that a user is given at least a certain

share of the total performance, and is hence more suitable in some situations than

the temporal fairness constraint given by (4.1). However, there is also a significant

disadvantage of a utilitarian scheduling scheme: a user experiencing poor channel

conditions could have a detrimental impact on the overall system performance. By

observing the constraint in (4.3), we have

E
(
UQ(~U)

)
≤
E
(
Ui1{Q(~U)=i}

)
ai

≤
E(Ui)

ai
.



- 67 -

Hence, if a user is experiencing very poor channel conditions [a very small value of

E(Ui)] and has a large value of ai, then it could compromise the overall system per-

formance significantly because a substantial portion of the total time-slots may have

to be allocated to this user in order to meet its fairness requirement. To alleviate this

potential problem, one can devise an adaptive thresholding strategy. To elaborate, if

E
(
Ui1{Q(~U)=i}

)
P{Q(~U) = i}E

(
UQ(~U)

) ≤ β,

where β is a predetermined threshold, then we decrease the values of ai because user i

cannot utilize the scarce spectrum efficiently.

We have studied two different fairness criteria—temporal and utilitarian fairness.

In the temporal fairness scheme, users “interact” with each other through resource

sharing. Users’ behavior are relatively isolated; i.e., given ri (the minimum time-

fraction assigned to user i), the achieved performance of a user depends heavily on

its own performance values. A very poor user can at most waste ri portion of the

system resource. This is different in utilitarian fairness schemes, where the achieved

performance values of users are heavily correlated because each user shares a certain

percentage of the overall performance.

4.3 Minimum-Performance Guarantee Scheduling Scheme

Thus far, we have discussed two optimal scheduling schemes that provide users

with different fairness guarantees. However, while they satisfy a relative measure

of performance (i.e., fairness), they do not consider any absolute measures. This

motivates the study of a new category of scheduling problems where QoS is defined

as the minimum-performance guarantee. To elaborate, the objective is to maximize

the average system performance subject to meeting each user’s minimum-performance

requirement.
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4.3.1 Problem Formulation

Suppose that each user has a minimum-performance requirement Ci, and the

vector ~C = {C1, C2, · · · , CN} is the requirement vector. The problem to maximize the

system performance while satisfying each user’s minimum requirement is stated as:

maximize
Q

E
(
UQ(~U)

)
subject to E

(
Ui1{Q(~U)=i}

)
≥ Ci, i = 1, 2, · · · , N. (4.5)

Consideration of this problem raises two questions: (i) Is ~C a feasible requirement

vector, i.e., does there exist a policy Q such that E(Ui1{Q(~U)=i}) ≥ Ci for all i? (ii) If

~C is a feasible requirement vector, which policy maximizes the overall performance

under the given QoS requirement?

Unlike in our previous two problems, the QoS constraint in this problem is defined

as a minimum-performance requirement instead of a fairness requirement. Hence,

the formulation here offers users a more “direct” service guarantee. For example, if

the performance measure is defined as the data-rate, then each user is guaranteed

a minimum data-rate, which may be more important to a user than knowing that

a minimum amount of resource will be assigned to it. While appealing to users,

providing minimum-performance guarantees can be quite difficult in practice because

of the feasibility issue—can the system satisfy the performance requirements for all

users? Note that feasibility is not a concern in the fairness-based constraints. In

the temporal-fairness scheduling problem defined in (4.1), as long as
∑

i ri ≤ 1, the

system is feasible. In the utilitarian fairness scheduling problem defined in (4.3),∑
i ai ≤ 1 is the feasibility constraint. Both of them are easy to verify. However,

there is no easy way, in general, to determine whether a given ~C is feasible or not.

We discuss this issue in more detail in Section 4.3.3.

There are, however, some natural settings where feasibility is not a problem. For

example, let Ci = ρiE(Ui), where ρi ≥ 0 for all i and
∑
ρi ≤ 1. Such a setting

can be satisfied by a non-opportunistic scheduling policy in which user i is chosen to
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transmit in a given time-slot with probability ρi. It is hence feasible for opportunistic

scheduling policies.

4.3.2 An Optimal Policy

We present an optimal scheduling policy assuming feasibility in this section, and

then discuss the feasibility problem in Section 4.3.3. Suppose ~C = {C1, C2, · · · , CN}

is feasible. We define a policy Q∗ by:

Q∗(~U) = argmax
i

(α∗iUi), (4.6)

where the α∗i s are chosen so that:

1. mini(α
∗
i ) = 1

2. E
(
Ui1{Q∗(~U)=i}

)
≥ Ci for all i

3. For all i, if E
(
Ui1{Q∗(~U)=i}

)
> Ci, then α∗i = 1.

Proposition 6 The policy Q∗ defined in (4.6) is a solution to the problem defined

in (4.5), i.e., it maximizes the average system performance under the minimum-

performance constraint.

For a proof of the above proposition, see Appendix A.4. The parameter ~α “scales” the

performance values of users, and the scheduling policy schedules the relatively-best

user, where user i is relatively-best if α∗iUi = maxj α
∗
jUj. If the scaling factor for a

user is larger than 1, then the user is an “unfortunate” user, and it is granted only

an average performance value that equals its minimum performance requirement.

Our opportunistic scheduling policy dominates non-opportunistic policies in the

following sense. Consider a non-opportunistic scheduling policy in which user i shares

a portion ρi of the resource (time-slots), where
∑

i ρi = 1, and user i gets an average

performance value ρiE(Ui). Let Ci = ρiE(Ui) for all i. Then ~C is feasible, and the

opportunistic scheduling policy always provides “no-worse” performance values for
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each user relative to that of the non-opportunistic scheduling policy, assuming that

the signaling cost is negligible.

In [46, 47], the authors study scheduling algorithms where both delay and channel

conditions are taken into account. Roughly speaking, the algorithm is: argmax biWiti,

where Wi is the head-of-the-line packet delay for queue i, ti is the channel capacity,

and bi is some constant. Furthermore, the authors of [47] state the following result

(assuming there is a finite set of channel states): to maximize the system throughput

with minimum-throughput requirements, there exists some constant ci such that one

should choose a user with the maximum value of citi. In these papers, however, there

is no discussion on how to obtain the values of ci, how to break ties, or how feasibility

plays a role. These issues are addressed in this section.

It turns out that a scheduling policy of the form of Q∗ = argmaxαiUi (as in

(4.6)) is optimal for other types of scheduling problems as well. For example, the

optimal utilitarian policy defined in (4.4) is in this form (i.e., αi = κ+ν∗i ). Moreover,

consider a class of scheduling problems without explicit constraints. Let ui be the

data rate of user i at a generic time-slot (an example of the performance value), and

let ~u = (u1, · · · , uN). Then, the average data rate of user i using policy Q, ti(Q), is

given by ti(Q) = E
(
ui1{Q(~u)=i}

)
. Suppose fi(x) is a monotonically increasing function

of x, representing the utility of user i given data-rate x. The problem is to find a

policy that maximizes the overall system utility:

maximize
Q

∑
i

fi(ti(Q)). (4.7)

Then following Prop. 6, an optimal policy Q∗ with respect to (4.7) is Q∗(~u) =

argmaxi(αiui), where ~α is a set of parameters that depend on the functions fi and

distribution functions of Ui. Different scheduling policies will result from different

choices of the function fi. Some examples are provided next.

The first example is when fi(x) = log(x) and αi = 1/E(ui1{Q(~u)=i}), which result

in the well-known proportional-fairness scheduling algorithm described in [41]. The

second example is to maximize the overall throughput where fi(x) = x. It is obvious
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that ~α = [1, 1, · · · , 1] is the solution to this problem, i.e., we always choose the user

with the highest data-rate to transmit. The last example is our scheduling problem

with minimum-throughput guarantees. In this case,

fi(x) =

 −∞ if x < Ci

x if x ≥ Ci
,

and an appropriate ~α is given in (4.6). In summary, the solution to a very large group

of opportunistic scheduling problems is in the form of argmaxαiUi.

4.3.3 Feasibility

The ability to provide a specific performance guarantee is an advantage of our

scheme. However, to satisfy such a constraint introduces the question of feasibility. In

the following, we discuss the feasibility problem and how to determine the feasibility

region of our scheduling policy. The feasibility region of a policy Q is the set of

requirement vectors that are feasible under the policy Q.

Proposition 7 The feasible region of our opportunistic scheduling policy is convex

and contains the feasibility regions of all policies.

A proof is included in Appendix A.6. The feasibility region of our scheduling policy

is determined by the distribution of ~U . In general, there is no closed-form expression

for the feasibility region even if the distribution function of ~U is known. The distri-

bution of ~U depends on the user’s channel condition, its mobility, and the form of

the performance value function. It is practically impossible to know the distribution

of ~U a priori in the system. Hence, we estimate the feasibility region using sample

paths; i.e., the sequence of {Uk
i }. Convexity is an important feature in determining

whether a requirement vector is feasible.

In general, the feasibility region is in an N-dimensional space, where N is the

number of users in the system. The vertex on the ith axis is [0, 0, · · · , E(Ui), · · · , 0],

which corresponds to assigning all the resource to user i. In the extreme case that all
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the resource is assigned to a single user, there is no performance difference between

opportunistic and non-opportunistic scheduling policies. Hence, they share the same

vertices on the axes. These N vertices span an (N − 1)-dimensional hyperplane.

Any non-negative vector below this hyper-plane is a feasible requirement vector for a

non-opportunistic scheduling policy.

The feasibility region of the opportunistic scheduling policy contains the feasibility

region of any non-opportunistic scheduling policy, while they share the same vertices

on the axes. We next determine some other vertices in the feasibility region of the

opportunistic scheduling policy. Let

Q~α(~U) = argmax
i

(αiUi), (4.8)

where ties are broken randomly. Given a value of ~α, using policy Q~α(~U) results in

an average performance vector, where its ith component is the average performance

value of user i (i.e., E(Ui1{Q~α(~U)=i})). In other words, by choosing a value for the

vector ~α, we obtain an average performance-value vector that determines one point

on the boundary of the feasibility region. By varying the values of ~α, we can draw

the boundary of the feasibility region. For example, if we set ~α = [1, 1, · · · , 1] in

(4.8), then we get the average performance-value vector representing the maximum

performance the system can obtain. By using different values of ~α in (4.8), we get

different performance-value vectors, resulting in different points in the N-dimensional

space. These points, along with the N vertices in the N axes, span an N-dimensional

surface. Because the feasibility region is convex, any non-negative vector under this

surface is feasible. If we choose more values of ~α, we get more points on the boundary

of the feasibility region, and thus we get a closer approximation to the actual feasibility

set.

Figure 4.1 shows the feasibility region for two users. The performance values of

user 1 and user 2 are independent and exponentially distributed with mean values 4

and 5, respectively. The two vertices on the two axes correspond to the two extreme

cases that all the resource is assigned to one user. The area between the straight line (a
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Fig. 4.1. The feasible region of two users.

1-dimensional “plane”) and the two axes is the feasibility region of a non-opportunistic

scheduling policy. The uppermost solid curve indicates the boundary of the feasibility

region of the opportunistic scheduling policy. The area between the uppermost curve

and the two axes is the feasibility region of our opportunistic scheduling policy. The

other two curves in between are approximations of the boundary of the feasibility

region. The solid line is the case where we have one vertex (~α = [1, 1])) besides

the two vertices on the axes. Note that the vertex corresponding to ~α = [1, 1] is

the maximum-system-performance case. By adding two more points (~α = [1, 3] and

~α = [3, 1]), we get a better approximation (dashed curve with stars), which gives a

fairly close approximation of the feasibility region. Hence, it is fair to say that we

can obtain reasonable estimates the feasibility region via measurement data.

Next, we discuss how to determine the feasibility region when the set of (active)

users changes in the cell. Suppose there are currently N users in the system, and we

have some information about these N users. We can estimate the feasibility region

for the N users using different values of ~α. Note that we can draw these vertices

simultaneously via measurements of ~U . We consider two situations: First, if a user
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leaves the system, we simply collapse the feasibility set from N dimensions to N − 1

dimensions by removing the axis of the leaving user. Second, suppose a new user

joins the system, and we do not have any information on the user except its average

performance value E(UN+1). We can connect all the points on the surface of the

feasibility set for the original N users with the new vertex on the (N + 1)th axis,

and construct a surface of N + 1 dimensions. Due to the convexity, any non-negative

(N + 1)-dimensional vector under the new surface is feasible.

Compared with non-opportunistic schedulers, opportunistic schedulers enlarge the

feasible region/capacity. Hence, we can achieve the following goals:

1. Accommodate more users under the same admission control policy. For exam-

ple, consider a simple admission control algorithm—users are admitted in the

system as long as the requirement vector is feasible; i.e., the admission region is

the same as the feasibility region. As shown in Figure 4.1, the uppermost curve

indicates the boundary of the feasibility region of the opportunistic scheduling

policy, whereas the straight (lowest) line is that of a non-opportunistic schedul-

ing policy. The area between these two curves is the area where the opportunis-

tic scheduling policy can accommodate two users while the non-opportunistic

scheduling policy can only accommodate one user.

2. Improve users’ service quality, in terms of higher performance and/or lower

degradation probability, when the same users are admitted in a non-

opportunistic scheduling scheme. Degradation means that the system cannot

satisfy the performance “guarantee” given to a user at admission due to system

load changes (say, handoff), variation in channel conditions, and mobility. If

we choose feasible Ci and let Ci ≥ riE(Ui), then our opportunistic schedul-

ing policy results in a “no-loss” situation for each user over non-opportunistic

scheduling policies, which guarantees better service quality for users.
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4.4 Discussion

We have presented a framework for opportunistic scheduling and studied three

classes of scheduling problems under the framework. These scheduling problems share

a common goal: to improve the spectrum efficiency while maintaining certain levels

of QoS for each user using opportunistic scheduling algorithms. The solutions to

these scheduling problems also have certain similarities—all the schemes choose the

“relatively-best” user to transmit. Although “relatively-best” has a different meaning

for each scheduling policy, the basic idea is to use an off-set or a scaling to satisfy the

QoS requirements for users. If a user is “unfortunate”, i.e., it has to take advantage of

other users to satisfy its QoS requirement (in terms of fairness or performance value),

then the user does not get more than its minimum requirement. This is done to max-

imize the system performance under the given constraints. In general, the larger the

number of users sharing the same channel, or the larger the variance of ~U , the larger

the “opportunistic” scheduling gain compared with non-opportunistic scheduling poli-

cies. Furthermore, the more restrictive the QoS constraint, the less the flexibility for

opportunistic scheduling decisions, and the lower the system performance gain.

In this chapter, we consider fairness from two different aspects: temporal fairness

and utilitarian fairness. Max-min fairness [65] can be considered as a special case of

the fairness requirement presented here. The intuitive notion of max-min fairness is

that any user is entitled to as much performance/resource as any other user. Max-

min fairness can be applied in two different ways. First, if we apply max-min fairness

to the utilitarian fairness scheduling scheme, then the system should maximize the

minimum performance of the users. This is equivalent to setting ai = 1/N for all i

in (4.3) (N is the number of users sharing the same channel). Specifically, each

user obtains the same performance value, and the system maximizes it. Second, if

max-min fairness is applied to the temporal fairness scheduling scheme, then we have

ri = 1/N for all i in (4.1), i.e., each user is granted to the same amount of resource.
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As mentioned earlier, feasibility is not a concern in the scheduling problems with

fairness requirements. The feasibility issue only arises in the problem with minimum-

performance requirements.

The scheduling schemes with temporal fairness requirements or minimum-

performance requirements can guarantee that the performance of each user is at

least as good as that of the corresponding user in any non-opportunistic scheduling

scheme under some assumptions. This desirable property cannot be guaranteed for

scheduling schemes with utilitarian fairness requirements.

Different schemes may be suitable for different scenarios. For example, if the

service provider wants to build a simple wireless network with pricing, the temporal

fairness scheduling scheme is a reasonable choice. The temporal fairness scheduling

scheme is simple and flexible without feasibility concerns. The amount of resource

consumed by a user implies the minimum performance the user gets (with technical

assumptions, see Prop. 4). The resource consumed by a user can be connected directly

with the price the user should pay. On the other hand, the minimum-performance

guarantee scheme provides users a direct performance assurance, but involves the

additional complication of feasibility. If the service provider wants to build a net-

work that provides data-rate guarantees, then this scheme is an appropriate choice.

However, in practice, the feasibility issue may be difficult to handle especially in a

wireless setting, and providing service performance guarantees is challenging in both

wireless and wireline networks.

It should be noted that our framework for opportunistic scheduling can also

cover cases where there are different constraints from different users. For example,

some users may have resource requirements while other users can have a minimum-

performance requirements. In such scenarios, similar optimal solutions can be pro-

vided under our framework using similar optimization techniques.

Last, we should note that the problem formulations, the objectives, and the con-

straints are expressed in terms of “expectation,” which is a “long-term” performance

measure. There is no guarantee of “short-term” performance. In Chapter 3 and



- 77 -

in [64], we discuss an extension to improve short-term performance, and a similar

process can be applied to other scheduling schemes. The basic idea is to increase a

user’s probability of transmission when it is behind in its share. In general, when

users’ performance values have strong correlation across time, the short-term perfor-

mance is poor. The stricter the short-term performance requirement, the lower the

opportunity to exploit time-varying channel conditions, and the less the performance

improvements. We also refer interested readers to [46, 47, 49, 48] where queueing

delays are considered.

4.5 Asymptotic Performance Bound

In this section, we study the asymptotic behavior of the opportunistic scheduling

schemes. Consider first the greedy scheduling policy Q(~U) = argmaxiUi. This pol-

icy always chooses the best user to transmit, and thus achieves the highest system

performance among all scheduling policies. Let

Zn = UQ(~U) = max
i=1,···,n

Ui, (4.9)

where n is the number of users. Then E(Zn) is the average system performance

of policy Q, the maximum among scheduling policies. Note that E(Zn) is a tight

upperbound on the performance of all the opportunistic scheduling schemes studied

in the dissertation (tight in the sense that there are scheduling schemes that come

arbitrarily close to the bound, and there exist degenerate cases where the optimal

scheme is the greedy scheme and hence achieves the bound). For example, if αi = 0 for

all i in the temporal fairness scheduling scheme, thenQ(~U) = argmaxiUi is an optimal

solution following Prop. 3. Similarly, when ai = 0 and Ci = 0 for all i, the greedy

algorithm is an optimal solution in the utilitarian fairness and minimum-performance

guarantee schemes, respectively. From (4.9), it is obvious that Zn+1 ≥ Zn, i.e, the

average system performance increases as the number of users competing for the same

channel increases. But how fast can E(Zn) increase? The following result gives us an

upperbound.
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Proposition 8 Suppose that E(|Ui|) ≤ C <∞ for all i. Then

E(Zn) = O(n), (4.10)

and O(n) is a “tight” bound in the following sense: for any ε > 0, there exists a

sequence of random variables {Ui} such that

lim
n→∞

E(Zn)

n1−ε
=∞.

A proof of this proposition is provided in Appendix A.7. By studying the asymp-

totic behavior of E(Zn), we obtain insights on the potential (limit) of opportunistic

scheduling algorithms. As presented in the proposition, E(Zn) grows at most as fast

as O(n), and O(n) is a “tight bound” in the sense that there exists sequences of ran-

dom variables that can reach this bound arbitrarily closely. Of course, the behavior

of E(Zn) is different when the Uis have different distribution functions. We next

illustrate the maximum achievable performance in opportunistic scheduling schemes

for various Ui. For simplicity, in each case, we assume that Ui are i.i.d. (independent

and identically distributed) random variables. In this case, any non-opportunistic

scheduling scheme obtains a system performance value of E(U), which is not affected

by the number of users in the system, where U is a random variable with the same

distribution as Ui. We define a ratio Gn = E(Zn)/E(U) to illustrate the performance

gain of an opportunistic scheduling scheme over that of non-opportunistic ones.

• If Ui is uniformly distributed over an interval [a, b], then

lim
n→∞

E(Zn) = b,

and limn→∞Gn = 2.

• If Ui is exponentially distributed with mean θ, then

E(Zn) = θ(1 +
n−1∑
i=1

1

i
).

Hence, limn→∞Gn/ logn = 1.
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• Let

F (u) =

 1− 1
uα

u ≥ 1

0 u < 1.

and α > 1. Then E(U) = 1
α−1

<∞, and

lim
n→∞

E(Zn)

n1/α
= E0,

where E0 =
∫∞

0
1− exp(−x−α) dx. We have limn→∞Gn/n

1/α = E0(α− 1), and

E(Zn) gets close to the bound O(n) as α decreases (α > 1).

4.6 Generalization

Note that in the previous problem formulations we only consider stationary poli-

cies. (A policy is a stationary policy if it is not a function of time.) In this section,

we use the temporal fairness scheduling problem as an example to show how to gen-

eralize our result to more general cases. Similar extensions hold for other scheduling

problems.

Let Q be a general policy whose value at time k may depend on the entire per-

formance value sequence {~Uk, k = 1, 2, · · ·} and the time. Let FK
i (Q) be the average

performance value of user i up to time K and RK
i (Q) be the average resource con-

sumption of user i up to time K. To elaborate,

FK
i (Q) =

1

K

K∑
k=1

Uk
i 1{Qk=i}, i = 1, 2, · · · , N

RK
i (Q) =

1

K

K∑
k=1

1{Qk=i}, i = 1, 2, · · · , N,

where Qk = Q({~U t, t = 1, 2, · · ·}, k). Let FK(Q) =
∑N

i=1 F
K
i (Q); i.e., FK(Q) is the

average system performance up to time K. We define

F (Q) = lim sup
K→∞

FK(Q),

which can be considered as the asymptotic best-case system performance of policy Q.
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We restate our policy Q∗ as follows:

Q∗(~Uk) = argmax
i

(Uk
i + v∗i ), (4.11)

where the v∗i s are chosen such that:

1. mini(v
∗
i ) = 0

2. lim infK→∞R
K
i (Q∗) ≥ ri for all i

3. For all i, if lim infK→∞R
k
i (Q

∗) > ri, then v∗i = 0.

Let Θ be the set of all scheduling policies. The temporal scheduling problem is

formulated as:

maximize
Q∈Θ

F (Q)

subject to lim inf
K→∞

RK
i (Q) ≥ ri, i = 1, 2, · · · , N. (4.12)

Proposition 9 If limK→∞R
K
i (Q∗) exists for all i for the Q∗ defined in (4.11), then

the policy Q∗ is a solution to the problem defined in (4.12).

Before we prove the above proposition, we explain the proposition under various

scenarios.

• Suppose that {~Uk, k = 1, 2, · · ·} is stationary and ergodic. Because Q∗ is a

stationary policy, RK
i (Q∗) and FK

i (Q∗) converge to a constant almost surely.

Thus, Q∗ is a solution to the problem defined in (4.12). Furthermore, we have

lim inf
K→∞

FK(Q∗) = lim sup
K→∞

FK(Q∗). (4.13)

This equation is critical. It states the important fact that the asymptotic worst-

case system performance of our policy Q∗ (lim infK→∞ F
K(Q∗)) is the same

as its asymptotic best-case system performance (lim supK→∞ F
K(Q∗)). Thus,

the worst-case performance of Q∗ asymptotically bounds the best-case system

performance of an arbitrary policy that satisfies the temporal fairness constraint.
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• Suppose that {~Uk, k = 1, 2, · · ·} is stationary and ergodic. Then many policies

have the nice property that FK
i (Q) and RK

i (Q) converge (to a random variable

almost surely). Examples of such policies are stationary policies and periodic

policies1. However, there exist policies such that

lim sup
K→∞

FK
i (Q) > lim inf

K→∞
FK
i (Q).

In this case, even if the policy Q is a solution to the problem defined in (4.12),

it is not a “good” solution because only its asymptotic best-case performance

bounds that of others. On the contrary, the asymptotic worst-case performance

ofQ∗ (defined in (4.12)) bounds the asymptotic best-case performance of others.

• The proposition holds without the assumption that {~Uk, k = 1, 2, · · ·} is sta-

tionary and ergodic. However, in this case, we may not be able to estimate the

parameters (v∗i ) used in Q∗ in practice.

• In the dissertation, we often use round-robin policy as an example of non-

opportunistic policies for comparison. To be specific, round-robin is a non-

stationary non-opportunistic scheduling policy. If {~Uk, k = 1, 2, · · ·} is station-

ary, then the expectation of the long-term average of the performance value of

a round-robin policy is equivalent to that of a non-opportunistic policy (i.e.,

E(Ui) for user i).

Proof: For technical simplicity, we assume that v∗i s are bounded. Furthermore,

if
∑N

i=1 v
∗
i = 0, then v∗i = 0 for all i. In this case, Q∗ always chooses the user with

the maximum performance value to transmit, and thus the result is trivial. Now we

consider the case where
∑N

i=1 v
∗
i > 0.

If policy Q satisfies the fairness constraints; i.e., lim infK→∞R
K
i (Q) ≥ ri for all i,

then for any ε > 0, there exists L1, such that for any K > L1, we have

RK
i (Q) > ri −

ε

2
∑N

i=1 v
∗
i

, i = 1, 2, · · · , N. (4.14)

1This can be shown by directly applying Birkoff’s ergodic theorem.
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Because of the hypothesis that limK→∞R
K
i (Q∗) exists and the condition 3 above to

choose v∗i s, we have

v∗i

(
lim
K→∞

RK
i (Q∗)− ri

)
= 0, i = 1, 2, · · · , N.

Hence, for the ε in (4.14), there exists L > L1, such that for K > L, we have

|v∗i (R
K
i (Q∗)− ri)| <

ε

2N
, i = 1, 2, · · · , N.

Then for K > L, we have

FK(Q) ≤ FK(Q) +
N∑
i=1

v∗i

(
RK
i (Q)− ri +

ε

2
∑N

i=1 v
∗
i

)

=
N∑
i=1

1

K

K∑
k=1

(Uk
i + v∗i )1{Qk=i} −

N∑
i=1

v∗i ri +
ε

2
.

By the definition of Q∗, we have
∑N

i=1(U
k
i + v∗i )1{Qk=i} ≤

∑N
i=1(U

k
i + v∗i )1{Q∗(~Uk)=i}.

Thus,

FK(Q) ≤
N∑
i=1

1

K

K∑
k=1

(Uk
i + v∗i )1{Q∗(~Uk)=i} −

N∑
i=1

v∗i ri +
ε

2

= FK(Q∗) +
N∑
i=1

v∗i
(
RK
i (Q∗)− ri

)
+
ε

2

≤ FK(Q∗) + ε.

Because ε is chosen arbitrarily, we have

lim sup
K→∞

FK(Q) ≤ lim sup
K→∞

FK(Q∗),

which complete the proof. �

4.7 Implementation

The opportunistic scheduling policies described in previous sections all involve

some parameters that need to be estimated online. For example, the temporal fairness

scheduling policy is given by

Q∗(~U) = argmax
i

(Ui + v∗i ),
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where the v∗i s are parameters determined by the distribution of ~U and values of the

ri. In practice, this distribution is a priori unknown, and hence we need to esti-

mate the parameters v∗i . Similar to the case study presented in Chapter 3, we use a

stochastic-approximation-based algorithm to estimate the parameters. The difference

is due to the inequality constraints. In the following, we use the (general) temporal

fairness scheduling scheme as an example to describe how to estimate efficiently these

parameters via stochastic approximation techniques. Similar parameter estimation

algorithms can be used for other scheduling schemes. Note that the authors in [46, 47]

do not provide any algorithm to estimate their parameters, and the adaptive algo-

rithm given in [51] cannot be implemented directly here because it involves equality

constraints instead of the more general inequality constraints studied in Section 4.2.

To use a stochastic approximation algorithm to estimate ~v∗, recall from Sec-

tion 4.1.2 that ~v∗ is chosen to satisfy the following condition: for any user i, if

v∗i > minj v
∗
j , then P{Q∗(~U) = i} = ri. Hence, we can write ~v∗ as a root of the

equation f(~v) = 0, where the ith component of f(~v) is given by

fi(~v) =

(
vi −min

j
(vj)

)(
P{Q(~U) = i} − ri

)
, i = 1, · · · , N.

Next, we use a stochastic approximation algorithm to generate a sequence of

iterates ~v1, ~v2, · · · that represent estimates of ~v∗. Each ~vk defines a policy Qk given

by

Qk(~U) = argmax
i

(Ui + vki ).

To construct the stochastic approximation algorithm, we need an estimate gk of f(~vk).

Although we cannot obtain f(~vk) directly, we have a noisy observation of its compo-

nents:

gki =

(
vki −min

j
(vkj )

)(
1{Qk(~U)=i} − ri

)
, i = 1, · · · , N.

The observation error in this case is

eki = gki − fi(~v
k) =

(
vki −min

j
(vkj )

)(
1{Qk(~U)=i} − P{Q

k(~U) = i}
)
,
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and thus we have E(eki ) = 0. Hence, we can use a stochastic approximation algorithm

of the form

vk+1
i = vki − δ

kgki ,

where, e.g., δk = 1/k.

When vki = minj v
k
j , we also need to ensure that P{Qk(~U) = i} ≥ ri. If

P{Qk(~U) = i} < ri, then ~vk is an infeasible parameter vector, which causes some

fairness constraint to be violated. To ensure that {vki } converges to v∗i , we should

project ~vk onto the feasible set of ~v. However, because we do not have knowledge of

the distribution of ~U , it is very difficult to find the exact projection. Hence, we use

the following intuitive algorithm as a projection.

It is easy to see that P{Q(~U) = i} is an increasing function of vi. Hence, if

vi = minj vj and P{Q(~U) = i} < ri, then we increase the value of vi to increase the

value of P{Q(~U) = i}, as a projection to the feasible set. Although we do not know

the value of P{Q(~U) = i}, we can estimate it by a moving average. Let pki be the

estimate of P{Qk(~U) = i}. We update pki in each time-slot by

pki = (1− w)pk−1
i + w1{Qk(~U)=i},

where w is a constant, indicating how fast pki tracks P{Qk(~U) = i}. If pki < ri and

vki = minj v
k
j , then we update vki as

vk+1
i = vki + ∆,

where ∆ is a positive constant. By doing this, we push ~vk towards the feasible set of

~v. We will show via simulations that this approach works well.

4.8 Simulation Results

In this section, we present numerical results from computer simulations of our

scheduling schemes. For the purpose of comparison, we also simulate two special

scheduling policies. The first is round-robin, a non-opportunistic scheduling policy
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that schedules (active) users following a predetermined order. This scheduling scheme

serves as a benchmark of the system performance in order to measure how much gain

the system can obtain using opportunistic scheduling policies. The second is a greedy

scheduling scheme that always selects the user with the maximum performance at a

generic time-slot to transmit. This greedy policy provides a tight upperbound on the

system performance as explained earlier in Section 4.5, and is used here to indicate

the tradeoff between the levels of QoS required by individual users and the overall

system performance. In general, the looser the requirements, the better the overall

performance.

We use the same cellular model as in Section 3.5. Figure 4.2 shows the forms of

the performance values used by different users (there are 10 users in the system). The

performance values of users 1, 5, and 8 are step-functions of SINR. The performance

values of users 2, 6, and 9 are linear functions of SINR (in dB). Users 3, 4, 7, and 10

have performance values that are S-shape functions of SINR. Here we assume that

users always have enough information to transmit when they are “on”.

The 10 users are divided into three “distance” groups. Specifically, when a user

becomes active, its distance from the base station is fixed, depending on which group

it belongs to. Users 1–4 belong to the “far” group, i.e., when the user becomes active,

its distance from the base station is 0.9R, where R is the radius of the cell. Users

5–7 belong to the “middle” group; their starting distance from the base station is

0.5R. Users 8–10 belong to the “near” group with a starting distance 0.2R. When

the user is active, it moves around in the cell freely and randomly. However, a user

in a “near” group has a much higher chance to be close to the base station than a

user in a “far” group. Hence, we can study how the distance from the base station

effects users’ performance in different scheduling schemes.

In the following paragraph, we describe the simulation procedure for the temporal

fairness scheduling scheme. Other scheduling schemes follow the same simulation

procedure, except for the details in steps 3 and 7. At the beginning of the simulation,

we set the initial value of the parameter, i.e., ~v1 = ~0.
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Fig. 4.2. Users’ performance values as a function of SINR.

We maintain an ordered list of users in the system for the round-robin scheduling

scheme. Let N be the number of active users. At each time-slot k = 1, 2, · · ·, the

following steps are simulated:

1. If user i is active, we generate Uk
i . In our simulation, each user’s performance

value is a specific function of its SINR, as shown in Figure 4.2. Each user mea-

sures the received power level from the central base station, and the interference

power level received from neighboring cells. We assume perfect measurement

in all the simulations unless otherwise specified. Based on these measurements,

the user calculates the SINR, and thus the corresponding performance value as

a function of SINR.

2. Active users transmit their values of Uk
i to the base station through a signaling

channel.

3. Based on the vector of performance values ~Uk, the base station decides which

user to schedule in the time-slot by

Qk(~Uk) = argmax
i

(Uk
i + vki ).
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4. If user j = Qk(~Uk) is the selected user, then the base station transmits to user

j in the time-slot k. The system receives a performance “reward” equal to the

performance value Uk
j .

5. In the round-robin scheduling scheme, we set J to be the index of the next

active user in our ordered list of users, and let user J transmit. The system

receives a performance “reward” equal to the performance value Uk
J of user J .

6. In the greedy scheduling scheme, we select the user I that has the maximum

performance value, and let it transmit. The system receives a “reward” Uk
I .

7. The base station updates the parameters used in the scheduling policy for all

active users, as described in Section 4.7:

vk+1
i = vki − δ

k

(
vki −min

j
(vkj )

)(
1{Qk(~U)=i} − ri

)
, i = 1, · · · , N.

We set δk = 0.01 to track changes in the system because we are simulating a

system that is not stationary in general. The larger the value of δk, the faster

the estimated parameter tracks the actual value of the parameter (e.g., vki tracks

v∗i ), but at the same time the larger the fluctuation of the estimated parameter.

Let P k
j be the estimate of P{Qk(~Uk) = j}; we update it according to

P k+1
j = (1− ε0)P

k
j + ε01{Qk(~Uk)=j},

where ε0 = 0.001 in the simulation. If vkj = mini v
k
i and P k

j < rj , then

vk+1
j = vkj + ∆,

where ∆ = 0.02 in the simulation. By doing this, we push vki s to the feasible

region.

The system performs the above procedure at every time-slot. Whenever the num-

ber of active users changes, the base station may need to update its QoS requirement,

and the value of the parameters (~vk) at that time is used as the initial value of the

on-line parameter estimation procedure in the new system state.
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4.8.1 Temporal Fairness Scheme

In this scheduling scheme, each user is entitled to a minimum portion of the

resource. For our simulation, we set all users to have the same minimum resource

requirement. Specifically, if N is the number of active users sharing the channel

in the central cell, then each active user has a resource requirement ri = 1/(N +

3). In this case,
∑

i∈A ri = N/(N + 3) < 1, where A is the set of active users.

Hence, the system has the freedom to assign a portion of the resource [3/(N + 3)] to

some “fortunate” users (beyond their minimum requirements) to further improve the

system performance, as discussed earlier.

Figures 4.3 and 4.4 show the results of our simulation experiments. In both figures,

the x-axis represents the users’ IDs. In Figure 4.3, the y-axis represents the portion of

resource each user gets in the different scheduling policies. The first bar is the result

of round-robin, where the resource is equally shared by all active users. Note that the

amounts of resource consumed by different users may not be equal because different

users are active at different times. The second bar shows the minimum requirements of

users, while the third bar shows the portion of resource used by users in our temporal

fairness scheduling scheme. The third bar is higher than the second bar for all the

users, which indicates that our scheduling policy satisfies the fairness requirements

of all users. Users 9 and 10 are the “fortunate” users in the system because they are

most likely to be close to the base station and have large performance values. Thus,

they get a much larger share of the resource than their minimum-requirements. The

rightmost bars represent the greedy scheduling scheme that always chooses the user

with the largest performance value to transmit. In this scheme, users 1, 2, 3, 4, 5,

and 8 get very little or almost zero resource while users 9 and 10 have very large

shares. As expected, the greedy algorithm is biased very heavily towards the users

close to the base station with higher performance values (but, of course, violates the

temporal fairness requirements).
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Figure 4.4 shows the average performance obtained by users in different scheduling

policies. The first bar represents round-robin, the second bar represents our schedul-

ing policy, and the third bar is the greedy algorithm. Note that in the opportunistic

scheduling scheme, all users except users 5 and 8 obtain higher average performance

values than in the round-robin scheme. Moreover, users 1, 2, 3, 4, and 6 actually

consume less resource while achieving better performance compared to round-robin,

because users are more likely to be chosen to transmit while experiencing good chan-

nel conditions in the opportunistic scheduling scheme. To explain why users 5 and

8 do not have higher performance values, recall that both users 5 and 8 are inelastic

users, whose performance values are step-functions of the SINR. Furthermore, user

5 belongs to the “middle” distance group, and user 8 is in the “near” group. Most

of the time, they experience SINR values that are higher than the threshold in the

step-function. Hence, there is little chance to improve their performance opportunis-

tically. Compared with round-robin, these two users get smaller performance values

because they consume less resource (recall that round-robin simply allocates the re-

source equally to all active users). We should clarify that these two users still obtain

performance values that are greater than riE(Ui), i = 5, 8, where ri is the required

time-fraction of user i, which is smaller than the fraction that user i gets in the

round-robin scheme in this simulation.

The overall system performance is improved by 64% in our scheduling scheme

while the greedy algorithm has a 111% performance improvement compared with

round-robin. Of course, the greedy algorithm achieves this performance improvement

by violating the QoS requirements of certain users.

We ignore the effects of fast multi-path fading in most of the simulations because

it is not very clear how well fast fading can be tracked in real fields. However, we

study the effect of fast Rayleigh fading in the following simulation. We adopt the

simulation model for fast Rayleigh fading in [32], which amplitude modulates the

inphase and quadrature components of a carrier with a low-pass filtered zero-mean

Gaussian noise source. We consider two cases: First, fast fading can be accurately
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Fig. 4.3. Portion of resource shared by users in the temporal fairness scheduling
simulation.
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Fig. 4.4. Average performance value in the temporal fairness scheduling simulation.
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estimated. Second, fast fading cannot be estimated, and thus there exists estimation

error (of Ui) in the simulation. Note that in other simulations in the dissertation,

fast fading is not simulated, and perfect estimation of Ui are assumed. Hence, besides

studying the effect of fast fading, this simulation also provides a preliminary result

on the robustness of our scheduling scheme and its implementation.

Figures 4.5 and 4.6 show the results of our simulation experiments in the fast

fading environment. In both figures, the x-axis represents the users’ IDs. In the

legend, suffix “ff” represents the case that fast fading can be accurately estimated,

and “ffn” means that fast fading is not estimated and thus acts as noise. In Figure 4.5,

the y-axis represents the portion of resource each user gets in different scheduling

policies. The first bar is the result of round-robin in the fast fading environment.

The second bar shows the minimum requirements of users. The third and fourth

bars show portion of resource used by users in our resource-based fairness scheduling

policy in the cases where the fast fading is estimated and not estimated, respectively.

In both cases, our scheduling policy satisfies the fairness requirement of all users.

The rightmost two bars represent the greedy scheduling scheme with and without

fast fading estimation, respectively.

Figure 4.6 shows the average performance obtained by users in different scheduling

policies. The first bar represents round-robin in the fast fading environments. The

second and third bar represent our scheduling policy with and without fast fading

estimation, respectively. The last two bar are the results of the greedy algorithm,

respectively. Compare these results with the simulation when fast fading is not con-

sidered, we can see that these figures are very similar. When fast fading exists and

cannot be estimated, it introduces errors to the estimates of users’ performance val-

ues. Hence, the system performance degrades to some extend in both our scheduling

scheme and the greedy scheme. In the fast fading environment, the overall system

performance is improved by 72% in our scheduling scheme when fast fading can be

estimated accurately and by 67% when fast fading is not estimated compared with

round-robin. For the greedy algorithm, the improvements are 119% and 117%, respec-
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tively. All of them are higher than the corresponding improvements in the previous

simulation when fast fading is not simulated. The result is not surprising because the

larger the variance of users’ performance values, the higher the gain of opportunistic

scheduling over non-opportunistic scheduling schemes in general. In summary, the

simulation results show that the opportunistic scheduling policy can satisfy the fair-

ness constraint with significant system performance gains, and our scheme is robust

to estimation errors.

It is worth noting that the effect of fast fading needs further study. Our simulation

model here is simplified. We assume fast fading is constant during a generic time-slot,

and it only effects the SINR of users. In practice, fast fading can have substantial

effects on error bit rates, and may result in retransmissions. Hence, tracking of fast

fading and suitable channel coding schemes (such as redundancy incremental coding)

should be further studied.
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Fig. 4.5. Portion of resource shared by users for the resource-based fairness
scheduling scheme in the fast fading simulation.
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Fig. 4.6. Average performance value for the resource-based fairness scheduling
scheme in the fast fading simulation.

4.8.2 Utilitarian Fairness Scheme

In this section, we show results for the utilitarian fairness scheduling scheme. We

set the performance requirements of users as:

~a = [0.02 0.08 0.05 0.05 0.02 0.1 0.1 0.02 0.1 0.1],

where
∑

i ai = 64%. In this setting, users 1, 5, and 8 have relatively low percentage

requirements. Recall that these users have low and inelastic performance values.

Therefore, to achieve the same amount of performance as other users, they require

a larger portion of the resource. Hence, we assign these users low requirements to

prevent them from using up too much resource in the system.

Figure 4.7 shows the average performance values of the users in different schedul-

ing schemes. The x-axis represents the users’ IDs, and the y-axis is the average

performance value. In the figure, the first bar indicates the average performance val-
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ues of users via the round-robin scheduling scheme. The second bar is the minimum

performance value the user should get, which is calculated as:

ai

∑T
k=1 U

k
Q(~Uk)

1
{{user i is active}}∑T

k=1 1
{{user i is active}}

,

where T is the total number of time-slots simulated, and T =1,000,000. The denom-

inator is the amount of time the user is active, whereas the numerator is the amount

of system performance when the user is active. In other words, a user requires a share

of the system performance only when it is active. The third bar indicates the perfor-

mance value obtained from our scheduling policy. We can see in Figure 4.7 that all

users obtain performance values larger than their minimum requirements. Moreover,

most users achieve higher performance values than that of the round-robin scheme

although there is no guarantee that the utilitarian scheme outperforms round-robin

for each user. The rightmost bar is the result of the greedy algorithm. Compared

with the round-robin scheme, our scheduling policy improves the overall system per-

formance by 50% while the greedy scheduling has an improvement of 110%.

Figure 4.8 shows the average amount of resource consumed by different users.

The first bar represents round-robin scheduling policy, the second bar represents our

scheduling policy, and the third bar is the greedy scheduling policy. The greedy

scheduling scheme allocates most resource to users in very good conditions (users 9

and 10). The utilitarian scheme, which also favors good users, allocates more resource

(than the greedy algorithm) to other users to satisfy their fairness constraints.

4.8.3 Minimum-performance Guarantee Scheme

Next, we show simulation results for the opportunistic scheduling scheme with

minimum-performance guarantees. First, we run the simulation for 1,000,000 time-

slots using the round-robin scheduling policy, where the resource is equally distributed

among all users, and active users are scheduled in a predetermined order. Thus we get

an average performance value and use it as the minimum-performance requirement.
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Fig. 4.7. Average performance value in the utilitarian fairness scheduling simulation.
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Then we run the simulation using the opportunistic scheduling policy, the round-robin

policy, and the greedy scheduling policy.

Figure 4.9 shows the average performance values of users resulting from the differ-

ent scheduling policies. The first bar indicates the average performance values using

the round-robin scheduling policy, the second bar is the minimum-performance re-

quirement of a user, the third bar indicates the result from our scheduling policy, and

the rightmost bar is that of the greedy algorithm. Note that our scheduling policy

outperforms the round-robin policy uniformly, which illustrates the “no-worse” guar-

antee discussed earlier in Section 4.3.2. Compared with round-robin, our scheduling

policy improves the overall system performance by 51% while the greedy scheduling

has an improvement of 109%. Similar to the previous simulation results, the greedy

algorithm results in the highest overall performance value at the cost of the extreme

unfairness among users.

Figure 4.10 shows the amount of resource consumed by each user in different

scheduling policies. The first bar represents round-robin, the second bar represents

our scheduling policy, and the third bar is the greedy scheduling scheme. As before,

the greedy algorithm results in the most biased time-fraction allocation.

In summary, the simulations show that using our scheduling policies, the system

can achieve significant performance gains while satisfying the QoS requirements. In

the simulations with fairness constraints, there is no guarantee that every user per-

forms better than using the round-robin policy. In the simulations with the minimum-

performance requirement, we set the requirement to be the performance value ob-

tained from round-robin; consequently, all users perform better using our policy than

that in round-robin. In all the simulations, the greedy scheme, as expected, has the

best performance at the cost of extreme unfairness among users, which indicates the

possible tradeoff between users’ QoS requirements and the system performance gain.
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Fig. 4.9. Average performance value in the minimum-performance guarantee
scheduling simulation.
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4.9 Conclusion

Opportunistic scheduling is a way to improve spectrum efficiency by exploiting

time-varying channel conditions. In this chapter, we present a framework for oppor-

tunistic scheduling—to maximize the average system performance value by exploiting

variations of the channel conditions while satisfying certain fairness/QoS constraints.

The framework provides the flexibility to study a variety of opportunistic scheduling

problems (many of the previous works by us and other researchers fit well into this

unified framework). Using this framework, we have studied three scheduling schemes:

to maximize the system performance with a temporal fairness requirement, a utilitar-

ian fairness requirement, and a minimum-performance requirement for each user. We

provide optimal solutions to each scheduling problem, and discuss their properties.

Different scheduling schemes may be suitable for different application scenarios. We

also study the asymptotic behavior of opportunistic scheduling schemes. Further, we

extend our results to nonstationary policies under more general conditions. Lastly, we

show via simulations that our opportunistic scheduling schemes result in substantial

system gains while maintaining users’ QoS requirements.
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5. JOINT SCHEDULING AND POWER ALLOCATION

Wireless spectrum efficiency is becoming increasingly important with the growing

demand for wide-band wireless services. Interference management is a crucial com-

ponent of efficient spectrum utilization in wireless systems. Power allocation and

opportunistic scheduling are effective mechanisms for interference management and

efficient spectrum utilization.

In wireless communication systems, the received power represents signal strength

to the desired receiver but interference to all other users. Power control is intended

to provide each user an acceptable connection by eliminating unnecessary interfer-

ence. The elegant work of Yates [8] abstracts the important properties of various

power control algorithms and presents a unified treatment of power control. While

power control is widely implemented in CDMA systems, such as IS-95 [9], it has also

been shown to increase the call carrying capacity for channelized systems, such as

TDMA/FDMA systems [10]. Furthermore, beyond the conventional concept of power

control as a means to eliminating the “near-far” effect, power control is an effective

resource management mechanism. It plays important role in interference manage-

ment, channel-quality/service-quality provisioning, capacity management, and etc.

[11, 10, 12, 13].

As explained in the previous chapters, opportunistic scheduling is a way to improve

spectrum efficiency by exploiting the variation of wireless channels. An advantage of

opportunistic scheduling is that it can be coupled with other resource management

mechanisms to further improve network performance. In this chapter, we study the

intercell-interference-alleviation problem using joint scheduling and power-allocation

mechanisms. We study two different versions of this problem. In the first problem, the

objective is to minimize the total transmission power, and thus interference to other

cells, subject to a minimum-data-rate requirement for each user within the cell. In the
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second problem, the objective is to maximize the system net utility, which is defined

as the value of the throughput minus the power cost, with the same minimum-data-

rate constraints. In both problems, we have joint scheduling and power-allocation

decisions.

5.1 System Model

As explained earlier, we consider a cell in a time-slotted system, and use a random

variable αi to represent the received SINR for user i at a generic time-slot given that

the transmission power is 1. Let ~α = {α1, · · · , αN}, where N is the number of users

in the system. Basically, ~α indicates the channel conditions of users at a generic

time-slot. Let fi(c) be the required SINR for reliable transmission at data-rate c

for user i, which is an increasing function of c, and fi(0) = 0. Different users may

have different forms of fi(c). Given αi, which indicates the channel condition, the

minimum required transmission power to support a data-rate c for user i is fi(c)/αi.

Let Pmax be the maximum transmission power, which represents the restriction on

the transmission power of a practical system. Let Ci denote the required average

data-rate for user i.

There are two components in a joint scheduling and power-allocation scheme:

a scheduling policy that decides which user to use the time-slot and a power al-

location policy that decides the transmission power of the selected user (and thus

its corresponding data-rate). Let Q be a scheduling policy; Q decides which user

should transmit at a generic time-slot, given the channel conditions. In general,

Q(~α) ∈ {1, · · · , N,Null}. If Q(~α) = i, i = 1, . . . , N , then user i is scheduled to trans-

mit. If Q(~α) = Null, then no user is scheduled to transmit. This may occur if all

users experience relatively bad channel conditions. Let p(·) be the power allocation

policy, 0 ≤ p(~α) ≤ Pmax. If user i is selected to transmit and its transmission power

is p(~α), then ci(p) = f−1
i (αip) is its achievable data-rate. In summary, a policy for a

joint scheduling and power-allocation scheme is given in the form of {Q, p}.
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5.2 Minimizing Transmission Power

First, we study the problem where the objective is to minimize the overall trans-

mission power while maintaining the required data-rate for each user within the cell.

By minimizing the overall transmission power, we decrease the intercell interference

without communications among base stations. To achieve this goal, we need to decide

which user should be scheduled at a generic time-slot and what should be its trans-

mission power. Let P (Q, p) be the overall transmission power of the system under

policy {Q, p}:

P (Q, p) =
N∑
i=1

E
(
p(~α)1{Q(~α)=i}

)
.

The problem that we are interested in can be formally stated as:

minimize
Q,p

P (Q, p)

subject to 0 ≤ p(~α) ≤ Pmax,

E
(
ci(p)1{Q(~α)=i}

)
= Ci, i = 1, · · · , N. (5.1)

Our objective is to minimize the overall transmission power P (Q, p) under two

sets of constraints. The first constraint, 0 ≤ p(~α) ≤ Pmax, indicates the

maximum-transmission-power restriction of the system. The second constraint,

E(ci(p)1{Q(~α)=i}) = Ci, is the minimum-data-rate constraint, where E(ci(p)1{Q(~α)=i})

is the average data-rate of user i given {Q, p}. Note that we could have written the

second constraint in the more general (inequality) form: E(ci(p)1{Q(~α)=i}) ≥ Ci. How-

ever, because our objective is to minimize the transmission power, a solution to (5.1)

is certainly a solution to the problem with the more general inequality constraints.

Hence, without loss of generality, we study the problem with the equality constraints,

as defined in (5.1).

We next present our solution to the joint scheduling and power-allocation problem

defined in (5.1). Let

L(~λ) =
N∑
i=1

E
(
p(~α)1{Q(~α)=i}

)
−

N∑
i=1

λi
(
E
(
ci(p)1{Q(~α)=i}

)
− Ci

)
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= E

(
N∑
i=1

(p(~α)− λici(p)) 1{Q(~α)=i}

)
+

N∑
i=1

λiCi.

We define

li(~λ, ~α, p) = p(~α)− λic(p)

p∗i (
~λ, ~α) = argmin

0≤p≤Pmax

li(~λ, ~α, p)

l∗i (
~λ, ~α) = li(~λ, ~α, p

∗
i (
~λ, ~α)).

Note that we have l∗i (
~λ, ~α) ≤ 0 because li(~λ, ~α, 0) = 0.

Proposition 10 Suppose there exists ~λ∗ such that

E
(
ci(p

∗)1{Q∗(~α)=i}

)
= Ci, i = 1, · · · , N,

where Q∗(~α) is defined as

Q∗(~α) = argmin
i

l∗i (
~λ∗, ~α). (5.2)

Then, {Q∗, p∗} is an optimal solution to the problem defined in (5.1).

The above proposition is valid for all fis that are increasing functions with fi(0) =

0. Further, if fi is a strictly convex function, then p∗ has a closed-form expression:

p∗(~λ, ~α) =


0 if f ′i(0) > λiαi
fi(f

′−1
i (λiαi))

αi
if f ′i(0) ≤ λiαi ≤ f ′i(Ci)

Pmax if f ′i(Ci) < λiαi

,

where Ci = f−1
i (αiPmax) is the maximum data-rate of user i given Pmax and the

channel condition.

From Proposition 10, we observe that a user is chosen to transmit when it is

a “relatively-best” user. User i is “relatively-best” if l∗i (
~λ, ~α) ≤ minj l

∗
j (
~λ, ~α) (and

hence has the same form as the opportunistic scheduler in Chapter 4). Moreover, the

transmission power of the selected user is the power that minimizes li(~λ, ~α, p). We

can think of λi as the unit reward (in terms of power/data-rate) to compensate power
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consumption. It controls the value of transmission power, and in turn the data-rate.

The fact that l∗i (
~λ, ~α) ≤ 0 indicates that the transmission power (p∗(~λ, ~α)) should be

no greater than the reward (λici(p
∗)) of the user for transmitting at data-rate ci(p

∗).

Also note that the resulting data-rate of a user is an increasing function of its unit

reward λi. This property enables us to obtain ~λ∗ iteratively in the implementation.

Proof of Proposition 10: Suppose a policy {Q, p} satisfies the maximum transmis-

sion power constraint and the data-rate constraint. We will show that

P (Q, p) ≥ P (Q∗, p∗).

Because {Q, p} satisfies the rate constraint, we have

P (Q, p) = P (Q, p)−
N∑
i=1

λ∗i
(
E(ci(p))1{Q(~α)=i} − Ci

)
= E

(
N∑
i=1

(p(~α)− λ∗i ci(p))1{Q(~α)=i}

)
+

N∑
i=1

λ∗iCi.

Further,

li(~λ
∗, ~α, p∗i (

~λ∗, ~α)) ≤ li(~λ
∗, ~α, p), 0 ≤ p ≤ Pmax,

by the definition of p∗i (
~λ∗, ~α). If Q 6= Null, then

N∑
i=1

(p(~α)− λ∗i ci(p)) 1{Q(~α)=i}

≥
N∑
i=1

li(~λ
∗, ~α, p∗(~λ∗, ~α))1{Q(~α)=i}

≥
N∑
i=1

li(~λ
∗, ~α, p∗(~λ∗, ~α))1{Q∗(~α)=i},

where the last inequality is because of the definition of Q∗. If Q = Null, because

li(~λ
∗, ~α, p∗(~λ∗, ~α)) ≤ 0, we have

N∑
i=1

(p(~α)− λ∗i ci(p))1{Q(~α)=i}

= 0

≥
N∑
i=1

li(~λ
∗, ~α, p∗(~λ∗, ~α))1{Q∗(~α)=i}.
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Hence,

P (Q, p) ≥ E

(
N∑
i=1

li(~λ
∗, ~α, p∗(~λ∗, ~α))1{Q∗(~α)=i}

)
+

N∑
i=1

λ∗iCi

= P (Q∗, p∗).

�

5.3 Maximizing Net Utility

Now we study a joint scheduling and power-allocation problem in a different sce-

nario. In Section 4.3, we consider a scheduling problem that maximizes the system

throughput subject to each user’s minimum data-rate requirement. Because a user’s

throughput is an increasing function of its transmission power and the objective is to

maximize the throughput, it is obvious that the base station should always transmit

with its maximum power. However, because transmission power causes interference

to other cells in wireless systems, we need to take the power consumption into account

as well. To achieve this goal, we introduce the notion of “net utility,” which is de-

fined as the difference between the value of the throughput and the cost of the power

consumption [13]. Note that in the context of downlink transmissions, the transmis-

sion power itself is not a concern because base stations usually have adequate power

supplies. Hence, the power cost here actually refers to the interference cost of the

transmission power, which is different from [13]. Let gi(p) be the power cost of user

i; then, ci(p) − gi(p) is defined as the net utility of user i. As before, let Q be the

scheduling policy and p be the power policy. Let Ti(Q, p) be the average net utility

of user i given the joint policy {Q, p}:

Ti(Q, p) = E
(
(ci(p)− gi(p))1{Q(~α)=i}

)
T (Q, p) =

N∑
i=1

Ti(Q, p).

We formulate the problem as:

maximize
Q,p

T (Q, p)
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subject to 0 ≤ p(~α) ≤ Pmax

E
(
ci(p)1{Q(~α)=i}

)
≥ Ci, i = 1, · · · , N (5.3)

In other words, the objective is to maximize the net utility given the maximum power

constraint and data-rate requirement constraints. We define

bi(~η, ~α, p) = ci(p)ηi − gi(p)

p∗(~η, ~α) = max
0≤p≤Pmax

bi(~η, ~α, p)

b∗i (~η, ~α) = bi(~η, ~α, p
∗(~η, ~α)).

Let Q∗(~α) be defined as

Q∗(~α) = argmax
i

b∗i (~η
∗, ~α), (5.4)

where ~η∗ satisfies:

1. mini=1,···,N η
∗
i = 1

2. Ti(Q
∗, p∗) ≥ Ci for all i

3. For all i, if Ti(Q
∗, p∗) > Ci, then η∗i = 1.

Proposition 11 {Q∗, p∗} is an optimal solution to the problem defined in (5.3).

Proof: Suppose {Q, p} satisfies the maximum transmission power constraint and

the data-rate constraint. We will show that T (Q, p) ≤ T (Q∗, p∗). We have

T (Q, p) ≤ T (Q, p) +
N∑
i=1

(η∗i − 1)(Ti(Q, p)− Ci)

=
N∑
i=1

E
(
(ci(p)η

∗
i − gi(p))1{Q(~α)=i}

)
−

N∑
i=1

(η∗i − 1)Ci.

Further,
N∑
i=1

(ci(p)η
∗
i − gi(p))1{Q(~α)=i}

≤
N∑
i=1

(ci(p
∗)η∗i − gi(p

∗))1{Q(~α)=i}

≤
N∑
i=1

(ci(p
∗)η∗i − gi(p

∗))1{Q∗(~α)=i}.
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The first inequality is due to the definition of p∗, and the second to the definition of

Q∗. Hence,

T (Q, p) ≤
N∑
i=1

E
(
(ci(p

∗)η∗i − gi(p
∗))1{Q∗(~α)=i}

)
−

N∑
i=1

(η∗i − 1)Ci

=
N∑
i=1

Ti(Q
∗, p∗) +

N∑
i=1

(η∗i − 1) (Ti(Q
∗, p∗)− Ci)

= T (Q∗, p∗),

which completes the proof. �
Note that the solutions of the two problems have certain similarities. Both policies

choose the “relatively-best” user to transmit and the optimal transmission power

maximizes/minimizes bi/li. Here, a user is relatively-best if b∗i (~η
∗, ~α) ≥ maxj b

∗
j(~η
∗, ~α).

The problem studied in Section 4.3 can be considered as a special case of the

problem defined in (5.3) with gi(p) ≡ 0. In other words, if we do not penalize

transmission power at all, then the base station always transmits with its maximum

power Pmax. In this case, the joint scheduling and power-allocation degenerates to a

pure scheduling problem.

5.4 Discussion

So far, we have studied three scheduling problems with the minimum-data-rate

constraints. In the first problem formulation, defined as (4.5) in Section 4.3, the

objective is to maximize the total performance value of a cell given the minimum-data-

rate constraints. The second problem, defined in (5.1), is to minimize the transmission

power, and the third, defined in (5.3), is to maximize the net utility, both under the

same constraint. These problem formulations target for different scenarios. In the

first problem, there is absolutely no collaboration among base stations. Each base

station transmits with its maximum power, and thus generates maximum interference

to other base stations. In the second and third problems, base stations are more

“considerate”: they take into account the negative effect of their transmission powers

on other cells (i.e., intercell interference). In the first and second problems, the system
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has different objectives. It is clear that using the second problem formulation, the

system can admit more users while satisfying their minimum data-rate requirements

or each user can have less degradation probability. On the other hand, a user may get

higher throughput (better than what it asks for) in the first formulation. The third

problem formulation targets to integrate the merits of the first two. If the power cost

is set high, then the third problem may degenerate to the second one. If the power

cost is set low, then the result may be the same as the first one. By setting a suitable

cost function, the base station can balance the tradeoff between the throughputs

of its own users and considerations for other cells, and thus improve the overall

system performance (e.g., throughputs/dropping probability in all cells). Hence, a

challenging problem is to find a cost function that reflects how the transmission power

of one cell affects the capacity of other cells (on average).

Because the transmission power of one base station causes interference to users

in other cells, one potential effect of the power allocation scheme is to induce the

fluctuation of channels in other cells, and thus may improve the scheduling gain,

especially in environments with little scatters and/or slow fading. Yet, there are

many questions to be answered in this context. The first question is how to ensure the

fluctuation in an appropriate time-scale such that we can increase the opportunistic

scheduling gain without experiencing significant delay. Second, we should study that

under what conditions which scheme performs better in terms of the number of users

admitted, the probability of failure, and the overall throughput. Further research

also includes the study of the system behavior (e.g., convergence of the transmission

power) when all cells implement the same scheduling and power-allocation algorithms.

5.5 Numerical Results

We use the same cellular model as in Section 3.5. Recall that f(c) is the required

SINR for reliable transmission at data-rate c. In practice, f is usually not a continuous

function because the system only supports discrete data-rates by adapting different



- 108 -

Rate (kbps) 10 20 30 40 50 60 70 80

SINR (dB) 5 10 15 20 25 30 35 40

Table 5.1
Achievable data-rate vs. SINR

coding rates and modulation schemes. Hence, in the simulation, we assume that

there are ten discrete data-rates available and the corresponding SINR requirements

are listed in Table 5.1. The data is similar to the result presented in [66].

In the following, we show simulation results for the joint scheduling and power-

allocation scheme that minimizes the overall transmission power with minimum-data-

rate guarantees. First, we set ~λ0. Then the system performs the following procedure

at every time-slot. Basically, the users measure their channel conditions, and then

send the information to the base station (~αk). The base station decides the user to be

scheduled and its transmission power using the joint scheduling and power-allocation

policy by substituting ~λk into (5.2). Then the base station updates the parameter

used in the scheduling policy by

λk+1
i = λki + ak(Ci − R̄

k
i ),

where ak is the step size (ak = 0.001), R̄k
i is the estimated average data-rate of user

i at time k, Ci is the required data-rate, and Ci = 3 (kbps).

For the purpose of comparison, we also simulate a round-robin policy. In the

round-robin scheduling policy, active users follow a predetermined order. When a

user’s turn comes, if its average transmission rate is lower than its required rate, then

we let the user transmit. Its transmission power is set to be the minimum power

required to support the highest data-rate achievable to the user given its channel

condition. If the use does not qualify to transmit, then we go to the next active user

until we find a user to transmit in the current time-slot or all active users have been

exhausted.
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Fig. 5.1. The average transmission power of round-robin and our policy.

We compare the average transmission power of our policy with that of round-robin.

The simulation is run for 100,000 time-slots. In the simulation, both policies can

maintain the required data-rates of users. Figure 5.1 shows the average transmission

power of each user using our policy and using round-robin. The x-axis is the user’s

ID. The y-axis is the average power consumption, which is the amount of transmission

power consumed by a user divided by its throughput. The first bar is the average

power consumption of a user in the round-robin scheme and the second bar is that

in our scheme. Note that the power consumption of each user in our scheme is

unanimously lower than that in round-robin. The total transmission power is only

32% of that of round-robin.

5.6 Conclusions

Opportunistic scheduling exploits time-varying channel conditions to improve

spectrum efficiency, providing an additional degree of freedom to the system. Its

merits also lie in its ability to work in conjunction with other resource management

mechanisms. In this chapter, we study joint scheduling and power-allocation schemes

to alleviate intercell interference. We study two problems with different but related
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objectives. The first objective is to minimize the total transmission power and the

second objective is to maximize the net utility, both under minimum-data-rate con-

straints. We provide optimal solutions to the studied problems and use simulation

results to evaluate the power savings compared with a round-robin scheme.
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6. CONCLUSIONS AND FUTURE WORK

In this chapter, we first conclude our work on opportunistic scheduling, and discuss

the advantages and disadvantages of opportunistic scheduling schemes. We then

present some open problems in the area.

6.1 Conclusions

To meet the increasing demand for wireless services, especially affordable wireless

Internet services, wireless spectrum efficiency is becoming increasingly important. In

wireless networks, users experience unreliable, location-dependent, and time-varying

channel conditions. Opportunistic scheduling exploits the variation of channel con-

ditions to improve spectrum efficiency. In this thesis, we have studied opportunistic

scheduling for time-slotted systems. Such systems include TDMA and certain CDMA

systems. First, the time-slot in the system model is a natural match for the time-slot

in a TDMA system. Further, research shows that, to achieve high-data capacity, data

users should transmit in a time-multiplexed mode instead of transmitting simultane-

ously as in traditional CDMA systems [56, 57, 25]. Hence, the time-slotted system is

also appropriate for CDMA systems used for high-rate data communications.

To improve spectrum efficiency, intuitively, we want to assign resource to users ex-

periencing “good” channel conditions. At the same time, it is also desirable to provide

some form of fairness or QoS guarantees. Otherwise, the system performance can be

trivially optimized by, for example, letting a user with the highest performance value

to transmit. This may prevent “poor” users (in terms of either channel conditions

or money) from accessing the network resource, and thus compromises the desirable

feature of wireless networks: to provide “anytime,” “anywhere” accessibility. In the

dissertation, we study opportunistic scheduling schemes under a unified framework.
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Each user’s channel-condition/performance-value is modeled by a stochastic process,

reflecting the time-varying performance that results from randomly-varying channel

conditions. The objective is to maximize the system performance under certain QoS

constraints. The framework provides the flexibility to study a variety of opportunistic

scheduling problems (many previous investigates fit under this unified framework).

Using this framework, we have studied three scheduling schemes: to maximize the

system performance with a temporal fairness requirement, a utilitarian fairness re-

quirement, and a minimum-performance requirement for each user. We find optimal

solutions for these scheduling problems. An attractive feature of these optimal solu-

tions is that they are given in a simple parametric form, hence lending themselves to

on-line implementation. We provide algorithms to estimate the parameters in these

optimal solutions and describe implementational procedures for each solution.

The schemes studied in the dissertation have different properties. In wireline net-

works, when a certain amount of resource is assigned to a user, it is equivalent to

granting the user a certain amount of throughput/performance value. However, the

situation is different in wireless networks, where the amount of resource and the per-

formance value are not directly related (though closely correlated). Hence, we study

both temporal and utilitarian fairness requirement in the dissertation. While fairness

criteria provide users a relative measure of performance, we also study an absolute

measure of performance, i.e., “minimum-data-rate”. Although providing users with a

minimum-data-rate requirement is desirable to some extent, it suffers from feasibility

problems. First, it is not an easy task to check whether users’ requirements can be

met at a give time. Second, it is even harder to meet the requirements through the

users’ lifetime due to users’ mobility and system capacity variation.

An advantage of opportunistic scheduling is that it can be coupled with other

resource management mechanisms to further increase network performance. In

Chapter 5, we study joint scheduling and power-allocation mechanisms for intercell-

interference alleviation. Interference management is crucial for spectrum efficiency

because interference ultimately limits the system capacity. Power control is a tra-
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ditional interference management mechanism, and opportunistic scheduling exploits

time-domain diversity. We combine the merits of the two and study different ver-

sions of interference management problems. In the first problem, the objective is to

minimize the total transmission power, and thus interference to other cells, subject

to a minimum-data-rate requirement for each user within the cell. In the second

problem, the objective is to maximize the system net utility, which is defined as

the difference between the value of the throughput and the power cost, with the

same minimum-data-rate constraints. In both problems, we have joint scheduling

and power-allocation decisions. These schemes are more considerate in the sense that

they take into account the negative result of their transmission powers to other cells.

In summary, opportunistic scheduling exploits the variation of channel conditions

to improve spectrum efficiency. It adds an additional degree of freedom to the system:

time-domain diversity or also called multiuser diversity. It improves spectrum effi-

ciency, especially for delay-tolerant data transmissions. The schemes studied in the

dissertation are relatively easy to implement, and robust to system dynamics, such

as the mobility of users and the status changes of users. The advantages of oppor-

tunistic scheduling also include the ability to work with other resource management

mechanisms. A good example of this is the joint scheduling and power-allocation

scheme.

However, nothing comes for free. Opportunistic scheduling also has its own cost

and limitations.

• There are signaling costs involved in all opportunistic scheduling schemes be-

cause scheduling decisions inherently depend on channel conditions (and/or

queueing status). Users need to constantly estimate their channel conditions

and report to the base station. Hence, the actual scheduling gain should take

into account the signaling costs.

• Because users need to estimate the channel conditions, estimation errors occur

in all scheduling schemes. There are various sources of estimation errors: er-



- 118 -

rors of estimations of channels, errors of estimations of parameters involved in

scheduling schemes, and errors caused by various delays such as transmission

delay, estimation delay, and restriction of time-slots, etc. In general, if the vari-

ation of channel conditions is relatively slow, then the estimation is good. In

Chapter 3, we have some preliminary results to show that our scheme is robust

to estimation errors. However, we have not taken into account the actual char-

acteristics of the estimation procedure in this study. We recommend a rigorous

study on this problem, especially in the case of fast fading.

• Opportunistic scheduling exploits the fluctuation of channel condition, and thus

scheduling gain depends on the amplitude of the variations of channels. In

general, the greater the fluctuation of channel conditions, the larger the number

of users, the better the performance gain.

• Another concern in opportunistic scheduling is the time scale of fluctuation. The

fluctuation of channels should be slow enough for user to estimate it and exploit

it. On the other hand, the fluctuation should be fast enough, so that users won’t

experience extreme long delays. (Though most data users are delay-tolerant,

extreme delays may cause upper-layer problems such as TCP-timeout.)

• There is a tradeoff between scheduling gain and short-term performance. In

general, the stronger the time-correlation of channel conditions (i.e., the slower

the channel fluctuation), the worse the short-term performance, and the greater

the improvement in the short-term performance, the less the scheduling gain.

• It is reported that the scheduling gain may decrease when there are multiple

antennas. Because smart antennas, including MIMO, are promising technologies

in future generation wireless networks, the relationship between opportunistic

scheduling and antennas arrays should be further studied.
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6.2 Future Work

Resource allocation and scheduling schemes are important in wireless networks,

especially to provide high-rate data and seamless service. There are many interesting

problems yet to be resolved in this area.

Various long-term fairness criteria, such as Proportional fairness, temporal fair-

ness, and utilitarian fairness, have been studied for scheduling problems in wireless

networks. However, there is a need for general short-term fairness criteria tailored to

wireless networks and dealing with the short-term performance in depth. References

related to the subject include [46, 47, 48, 49, 50], where queueing status is a part of

scheduling decisions, and [64], which is a heuristic extension of the GPS.

A problem related to improving short-term performance is to schedule traffic with

deadlines, i.e., real-time traffic. Specifically, upon arrival, each real-time packet has

a delay deadline, and packets that cannot be transmitted before their deadlines are

dropped/marked. Research on scheduling with deadlines in the wireline setting has

led to several approaches, e.g., [67, 68, 69, 70, 71]. The goal is typically to minimize

some measure of the number of deadline misses (including weighting such misses ac-

cording to packet classes, also called weighted loss). The challenge in wireless networks

is due to the time-varying channel conditions. In this type of problems, the objec-

tive is to improve system performance (with or without fairness/QoS constraints) by

exploiting multi-user diversity. Approaches to these problems may include off-line

optimal solutions with the assumption of entire traffic and channel information, on-

line model-based solutions, and heuristic algorithms [53]. Heuristic algorithms play

an important role in real-time scheduling problems because (typically) the optimal

scheduling problem is NP-complete and simplicity is a desirable feature. In the wire-

line world, it is sometimes the case that complicated scheduling schemes do not have

significant performance gains over simple schemes, such as static priority or earliest-

deadline-first. A similar situation can be expected to hold for wireless networks.
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Our opportunistic scheduling framework is based on the premise that the wireless

channel is time-varying, and we can schedule users to transmit at those times that are

opportunistically “relatively good.” This idea can be extended to the frequency do-

main: we opportunistically schedule users to frequencies (ant time) that are relatively

good. An example of such systems is OFDM systems. OFDM (orthogonal frequency

division multiplexing) is a promising transmission (modulation) technique to combat

ISI over multipath fading channels and provide efficient frequency utilization [17, 21].

Resource management in OFDM systems has been studied in both single-user systems

[72, 73, 74, 75, 76, 77, 78] and multi-user systems [79, 80, 81, 82, 83, 84, 85]. However,

none of the these works exploit the variations of channel conditions in time. Since an

OFDM symbol usually lasts 100µs to 1000µs, for data service without strict delay

requirements, we can expect to reap performance benefits by exploiting time-domain

diversity too. The performance measure in such systems may include bit-rate, power

consumption, and bit-error rate. The objective is to improve the system performance

by exploiting both frequency-domain and time-domain diversity (with or without fair-

ness/QoS constraints). A concern of opportunistic scheduling in such systems is the

signaling cost. Because each subcarrier is very narrow in OFDM systems, signaling

should be carefully designed to ensure good channel estimation of users on different

subcarriers while avoiding significant signaling overhead.

Opportunistic scheduling exploits the channel fluctuations of users. Hence, the

larger the channel fluctuation, the higher the scheduling gain. Then a natural question

is what to do in environments with little scattering and/or slow fading. In [30], the

authors use multiple transmission antennas to “induce” fluctuations of the received

SINR of users, and thus exploit multi-user diversity. The merit of the work is to find

the optimal beamforming without feedback information on each antenna (phase and

amplitude). This scheme does not “induce” physical fluctuations in channels. For

downlink transmission, the transmission power of one base station causes interference

to users in other cells. Hence, using a joint power control and scheduling scheme,

we can actually induce fluctuation physically by changing the transmission power
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at different base stations. The problems to be studied include the system behavior

(e.g., convergence), time-scale of fluctuation, and overall capacity, etc., as discussed

in Section 5.4.

The opportunistic scheduling scheme in its current form is a network-layer prob-

lem. However, its performance is closely related to physical-layer designs. As ex-

plained earlier, estimation errors occur in all opportunistic scheduling schemes. On

one hand, we need better understandings of the effect of channel estimation errors on

scheduling schemes. On the other hand, it calls for better channel estimation tech-

niques and smart coding schemes (e.g., incremental redundancy transmission schemes

with turbo codes). Further, it is also important to study the performance of oppor-

tunistic scheduling in multiple antenna systems. In summary, a better understanding

of physical-layer technologies or even layer-breaking designs can be potentially bene-

ficial.

In general, the scheduling gain increases as the number of users increases. How-

ever, the normalized scheduling gain (scheduling gain over number of users) decreases

with the increase of the number of users. For example, if Uis are i.i.d. with exponential

distribution, then the scheduling gain is O(log(n)). On the other hand, the signaling

cost per user remains the same. Hence, it is an question of practical importance to

decide the number of users sharing a same channel.

The opportunistic scheduling problems described in the previous chapters have

the net effect of increasing the overall effective capacity of the wireless network. This

means that the network can now accommodate more users or higher-data-rate users.

Thus, we know that keeping all else constant, the admissible region of the wireless

network will increase by using opportunistic scheduling schemes. A challenging prob-

lem that still remains is making intelligent admission control decisions of whether or

not to allow a new user into a cell. Although admission control is a difficult problem

in wireless systems whether or not opportunistic scheduling is used, it is more chal-

lenging in the context of opportunistic scheduling because opportunistic scheduling

increases the system dynamics.
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APPENDIX A

A.1 Proof of Prop. 1

Given the fairness requirements r1, · · · , rN , the scheduling policy (3.2) is an oppor-

tunistic solution of (3.1). In the following, we prove the optimality of our scheduling

policy (3.2).

To make the proof easy to understand and provide insight into the scheduling

policy, we consider the special case where there are only two users and P{U1 + v∗ =

U2} = 0. For this special case, the opportunistic scheduling policy is given byQ∗(~U) =

argmax(U1 + v∗, U2), which is illustrated in Figure A.1. Above the line U1 + v∗ = U2,

we have Q∗(~U) = 2, while below the line, we have Q∗(~U) = 1. The probability

measure of the line is 0 in this case. We show that E
(
UQ∗(~U)

)
≥ E

(
UQ′(~U)

)
for

any feasible policy Q′ (recall that a feasible policy is a policy that satisfies the time-

fraction assignment constraint).

Consider a feasible policy Q′ that is different from policy Q∗ in regions A and B

as shown in Figure A.1, where A, B, C, and D are events given by:

A = {Q∗(~U) = 2, Q′(~U) = 1};

C = {Q∗(~U) = Q′(~U) = 2};

B = {Q∗(~U) = 1, Q′(~U) = 2};

D = {Q∗(~U) = Q′(~U) = 1}.

It is obvious that P (A) = P (B). If P (A) = 0, then Q′(~U) is equal to Q∗(~U) with

probability 1 and E
(
UQ′(~U)

)
= E

(
UQ∗(~U)

)
because Ui is bounded. We next show

that if P (A) > 0, then E
(
UQ∗(~U)

)
> E

(
UQ′(~U)

)
. Indeed,

E
(
UQ∗(~U)

)
=

∫
D

U1 dP +

∫
B

U1 dP +

∫
A

U2 dP +

∫
C

U2 dP
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U1

U2

U1+v*=U2

A

B

C

D

Fig. A.1. Illustration of policies Q∗ and Q′; Q∗(~U) = 1 in B and D, and Q′(~U) = 1

in A and D; Q∗(~U) = 2 in A and C, and Q′(~U) = 1 in B and C.

E
(
UQ′(~U)

)
=

∫
D

U1 dP +

∫
B

U2 dP +

∫
A

U1 dP +

∫
C

U2 dP.

Hence,

E
(
UQ∗(~U)

)
− E

(
UQ′(~U)

)
=

∫
B

(U1 − U2) dP +

∫
A

(U2 − U1) dP.

On A, U2 > U1 + v∗, so U2−U1 > v∗; and on B, U2 < U1 + v∗, so U1−U2 > −v∗.

So

E
(
UQ∗(~U)

)
− E

(
UQ′(~U)

)
>

∫
B

−v∗ dP +

∫
A

v∗ dP = 0.

Hence, E
(
UQ∗(~U)

)
≥ E

(
UQ′(~U)

)
for any feasible policy Q′. The key insight in the

above argument is that any policy Q′ that schedules user 1 instead of user 2 in any

region above the line will lose out to policy Q∗ because the performance over that

region is inferior for user 1 relative to user 2.

Next, we prove the scheduling policy is optimal in general ; i.e., for the case

of multiple users. Let Q∗(~U) be the opportunistic policy in (3.2). We show that
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E
(
UQ∗(~U)

)
≥ E

(
UQ′(~U)

)
for any feasible policy Q′. A similar argument to the one

used above applies here.

Let Cij denote the event:

Cij = {Q∗(~U) = i, Q′(~U) = j}

for i = 1, · · · , N and j = 1, · · · , N . Because both Q∗ and Q′ are feasible policies, we

have

Bj =
N⋃
i=1

Cij = {Q′(~U) = j} ⇒ P (Bj) = rj;

Ai =
N⋃
j=1

Cij = {Q∗(~U) = i} ⇒ P (Ai) = ri.

Thus,

E
(
UQ∗(~U)

)
− E

(
UQ′(~U)

)
=

N∑
i=1

N∑
j=1

∫
Cij

UQ∗(~U) dP −
N∑
i=1

N∑
j=1

∫
Cij

UQ′(~U) dP

=
N∑
i=1

N∑
j=1

∫
Cij

UQ∗(~U) − UQ′(~U) dP

=
N∑
i=1

N∑
j=1

∫
Cij

Ui − Uj dP.

On Cij, we have Q∗(~U) = i and Q′(~U) = j. Because Q∗(~U) = i, then Ui+v
∗
i ≥ Uj+v

∗
j

by the construction of the opportunistic policy Q∗, and so Ui−Uj ≥ v∗j−v
∗
i . Therefore,

E
(
UQ∗(~U)

)
− E

(
UQ′(~U)

)
≥

N∑
i=1

N∑
j=1

∫
Cij

v∗j − v
∗
i dP

=
N∑
j=1

v∗j

N∑
i=1

∫
Cij

dP −
N∑
i=1

v∗i

N∑
j=1

∫
Cij

dP

=
N∑
j=1

v∗j

∫
Bj

dP −
N∑
i=1

v∗i

∫
Ai

dP
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=
N∑
j=1

v∗j rj −
N∑
i=1

v∗i ri

= 0

Hence, E
(
UQ∗(~U)

)
− E

(
UQ′(~U)

)
≥ 0 for any feasible policy Q′, which completes the

proof.

A.2 Improvments of Individual Users

When users have independent performance values, the opportunistic scheduling

scheme improves performance for each individual user. Here we prove Prop. 2. Note

that Prop. 4 is a trivial extension of Prop. 2.

Denote Ti = E
(
Ui1{Q(~U)=i}

)
, T ri = riE(Ui), and

∑N
i=1 ri = 1. Hence, Ti is

the average performance of user i in the opportunistic scheduling policy, and T ri is

the average performance of a non-opportunistic scheduling policy. Because a non-

opportunistic scheduling policy schedules users without considering channel condi-

tions, and ri is the portion of time slots assigned to user i, we have T ri = riE(Ui).

In the following, we will show that Ti ≥ T ri for all i, if Ui is independent of Uj for

all i 6= j.

Ti = E
(
Ui1{Q(~U)=i}

)
= E(Ui|Q(~U) = i)P (Q(~U) = i)

= riE(Ui|Q(~U) = i)

T ri = riE(Ui)

Hence, to prove that Ti ≥ T ri , we only need to prove that

E(Ui|Q(~U) = i) ≥ E(Ui)

w.p.1 (with probability 1). We have

Q(~U) = i ⇒ Ui + v∗i ≥ Uj + v∗j , for all j

⇔ Ui ≥ max
j 6=i

(Uj + v∗j )− v
∗
i
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Let Y = maxj 6=i(Uj + v∗j )− v
∗
i , we have

E(Ui|Q(~U) = i) ≥ E(Ui|Ui ≥ Y )

= E(Ui|Ui ≥ Y )P (Ui ≥ Y ) + E(Ui|Ui ≥ Y )P (Ui < Y )

≥ E(Ui|Ui ≥ Y )P (Ui ≥ Y ) + E(Ui|Ui < Y )P (Ui < Y )

= E(Ui);

i.e., E(Ui|Q(~U) = i) ≥ E(Ui). Hence, Ti ≥ T ri . �
Note that in general we cannot prove that Ti ≥ T ri . Here is a counter example

where two users have a negative correlation coefficient.

U1 =


100 with prob. 0.1

3 with prob. 0.5

1 with prob. 0.4

U2 =


−1 if U1 = 100

2 if U1 = 3

1 if U1 = 1

Furthermore, r1 = r2 = 0.5 and

E(U1) = 100 ∗ 0.1 + 3 ∗ 0.5 + 1 ∗ 0.4 = 11.9

E(U2) = −1 ∗ 0.1 + 2 ∗ 0.5 + 1 ∗ 0.4 = 1.3

E(U2
1 ) = 1004.9

E(U2
2 ) = 2.5

σ1 =
(
E(U2

1 )− E2(U1)
)1/2

= 29.3

σ2 =
(
E(U2

2 )− E2(U2)
)1.2

= 0.9

ρ =
E(U1U2)−E(U1)E(U2)

σ1σ2
= −0.84.

It is obvious that ~v∗ = [1, 0] and when U1 = 3 and U2 = 2, we let user 1 transmit

with probability 0.8. Hence,

T2 = E
(
U21{Q=2}

)
= 2 ∗ 0.5 ∗ (1− 0.8) + 1 ∗ 0.4 = 0.6 < E(U2) ∗ r2 = 0.65.
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One intuition from this counter example is: correlation coefficient is not an accu-

rate measure of users’ dependence on each other. In this case, negative correlation

coefficient does not imply that when one user is good, the other one is bad.

A.3 Proof of Prop. 5

Recall that the performance-based scheduling problem is defined as

maximize
Q∈Θ

E
(
UQ(~U)

)
subject to E

(
Ui1{Q(~U)=i}

)
≥ aiE

(
UQ(~U)

)
, i = 1, 2, · · · , N.

The policy Q∗ is defined as

Q∗(~U) = argmax
i

((κ+ ν∗i )Ui) ,

where κ = 1−
∑N

i=1 aiν
∗
i , and the ν∗i ’s are chosen so that:

1. mini(ν
∗
i ) = 0

2. E
(
Ui1{Q∗(~U)=i}

)
≥ aiE

(
UQ∗(~U)

)
for all i

3. For all i, if E
(
Ui1{Q∗(~U)=i}

)
> aiE

(
UQ∗(~U)

)
, then ν∗i = 0 .

In the following, we prove that Q∗ is an optimal policy.

Proof: Let Q be a policy satisfying E(Ui1{Q(~U)=i}) ≥ aiE(UQ(~U)) for all i. Because

ν∗i ≥ 0,

E
(
UQ(~U)

)
≤ E

(
UQ(~U)

)
+

N∑
i=1

ν∗i

(
E
(
Ui1{Q(~U)=i}

)
− aiE

(
UQ(~U)

))
=

(
1−

N∑
i=1

ν∗i ai

)
E

(
N∑
i=1

Ui1{Q(~U)=i}

)
+

N∑
i=1

ν∗i E
(
Ui1{Q(~U)=i}

)
=

N∑
i=1

(κ+ ν∗i )E
(
Ui1{Q(~U)=i}

)
.

By the definition of Q∗, we have

N∑
i=1

((κ+ ν∗i )Ui) 1{Q(~U)=i} ≤
N∑
i=1

((κ+ ν∗i )Ui) 1{Q∗(~U)=i}



- 135 -

Hence,

E
(
UQ(~U)

)
≤

N∑
i=1

(κ+ ν∗i )E
(
Ui1{Q∗(~U)=i}

)
= E

(
UQ∗(~U)

)
+

N∑
i=1

ν∗i

(
E
(
Ui1{Q∗(~U)=i}

)
− aiE

(
UQ∗(~U)

))
= E

(
UQ∗(~U)

)
,

which completes the proof. �

A.4 Proof of Prop. 6

The minimum-performance guarantee problem is formulated as:

maximize
Q

E
(
UQ(~U)

)
subject to E

(
Ui1{Q(~U)=i}

)
≥ Ci, i = 1, 2, · · · , N,

where E(Ui1{Q(~U)=i}) is the average performance of user i, and Ci ≥ 0 is the minimum

performance requirement of user i. The policy Q∗ is defined as:

Q∗(~U) = argmax
i

(α∗iUi), (1)

where the α∗i ’s are chosen so that:

1. mini(α
∗
i ) = 1

2. E
(
Ui1{Q∗(~U)=i}

)
≥ Ci for all i

3. For any user i, if E
(
Ui1{Q∗(~U)=i}

)
> Ci, then α∗i = 1.

In the following, we prove that Q∗ is an optimal policy.

Proof: Let Q be a policy satisfying E(Ui1{Q(~U)=i}) ≥ Ci for all i. Because α∗i ≥ 1,

E
(
UQ(~U)

)
≤ E

(
UQ(~U)

)
+

N∑
i=1

(α∗i − 1)
(
E
(
Ui1{Q(~U)=i}

)
− Ci

)
=

N∑
i=1

E
(
Ui1{Q(~U)=i}

)
+

N∑
i=1

(α∗i − 1)E
(
Ui1{Q(~U)=i}

)
−

N∑
i=1

(α∗i − 1)Ci

=
N∑
i=1

E
(
α∗iUi1{Q(~U)=i}

)
−

N∑
i=1

(α∗i − 1)Ci.
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By the definition of Q∗, we have

N∑
i=1

α∗iUi1{Q(~U)=i} ≤
N∑
i=1

α∗iUi1{Q∗(~U)=i}

Hence,

E
(
UQ(~U)

)
≤

N∑
i=1

E
(
α∗iUi1{Q∗(~U)=i}

)
−

N∑
i=1

(α∗i − 1)Ci

= E
(
UQ∗(~U)

)
+

N∑
i=1

(α∗i − 1)
(
E
(
Ui1{Q∗(~U)=i}

)
− Ci

)
= E

(
UQ∗(~U)

)
,

which completes the proof. �

A.5 Proof of Existence

In this section, we prove that there exists an optimal policy as defined in (4.2) for

the temporal fairness scheduling problem. In other words, there exist v∗i s that satisfy

the following conditions:

1. mini(v
∗
i ) = 0

2. P{Q∗(~U) = i} ≥ ri for all i

3. For all i, if P{Q∗(~U) = i} > ri, then v∗i = 0,

where Q∗ is defined as

Q∗(~U) = argmax
i

(Ui + v∗i ).

We first prove the existence of such a policy for the special case studied in Chapter 2,

where
∑N

i=1 ri = 1. We then generalize the result to the case where
∑N

i=1 ri ≤ 1.

Lemma 1 For any vector ~r = {r1, r2, · · · , rN}, where
∑N

i=1 ri = 1 and ri ≥ 0 for all i,

there exists ~v∗ and corresponding tie-breaking probability such that P{Q∗(~U) = i} = ri

for all i, where the policy Q∗ is defined as:

Q∗(~U) = argmax
i=1,···,N

Ui + v∗i ,
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and when a tie occurs, we choose one of the maximizing users with a certain proba-

bility.

Proof : 1. Special case: We first consider the case where the Uis are continuous

random variables and have bounded joint density functions. We use induction. When

there are only two users in the system, it is easy to see that there exists v∗, such that

P{U1 + v∗ ≥ U2} = r1; i.e, v∗1 = v∗ and v∗2 = 0.

Suppose the lemma is true when there are N − 1 users. We will prove it is true

for the N-user case. In the N-user case, if ri = 0 for any i, then it degenerates to the

N − 1 user case, which holds by the induction hypothesis. Hence, in the following,

we only consider the case where ri > 0 for all i.

Let

r̃i = ri + rN/(N − 1), i = 1, · · · , N − 1.

By the induction hypothesis, there exists v0
1, · · · , v

0
N−1, such that

P{Ui + v0
i ≥ max

j=1,···,N−1
Uj + v0

j } = r̃i, i = 1, · · · , N − 1.

Because E(Ui) <∞, there exists M such that

P{Ui > M} < ri/(N − 1), i = 1, · · · , N.

Define

fi(~v) = P{Ui + vi ≥ max
j 6=i

Uj + vj}.

Let

v1
i = v0

i − min
j=1,···,N−1

v0
j +M, i = 1, · · · , N − 1,

and v1
N = 0. Recall that Uis are non-negative. Then we have

fi(~v
1) ≥ r̃i −

rN
N − 1

= ri, i = 1, · · · , N − 1.

In the following, we will construct a sequence of ~vi, i = 1, 2, · · ·, that converges.

For the ith step, we do the following: we pick a user j, where

j = (i mod (N − 1)) + 1.
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Let vik = vi−1
k for all k 6= j, and set the value of vij such that

fj(~v
i) = rj.

Apparently, vij ≤ vi−1
j . Because fk(~v) (k 6= j) increases when vj decreases, we have

fk(~v
i) ≥ fk(~v

i−1) ≥ rk, k 6= j.

Thus, we have constructed a decreasing sequence ~vi that has a lower bound (vij ≥

−M). Hence, it converges. Let

v∗j = lim
i→∞

vij , j = 1, · · · , N − 1.

and v∗N = 0.

Because the Ujs are continuous random variables with bounded joint density func-

tion, fj(~v) is a continuous bounded function of ~v. Hence, fj(~v
i) converges. Further-

more, there exists a subsequence fj(~v
i) = rj, where i = m(N − 1) + j − 1. Hence,

fj(~v
∗) = rj, j = 1, · · · , N − 1,

and thus,

fN(~v∗) = 1−
N−1∑
j=1

rj = rN .

In other words, if the Ujs are continuous random variable, then there exists ~v∗ such

that

P{Ui + v∗i ≥ max
j 6=i

Uj + v∗j} = ri, i = 1, · · · , N.

2. General Case: Let us consider the N-user case, where ri > 0 for i = 1, · · · , N .

To prove Lemma 1, we construct a sequence of continuous random variables with

bounded joint density functions to approximate random viables Uis, and obtain v∗i s

by the limit of the parameters of the sequence of the constructed continuous random

variables. Then we find tie-breaking probabilities, which concludes the proof.

First, we use a sequence of continuous random variables {Un
i } to approximate

random variables Uis:

Un
i = Ui + εni , j = 1, · · · , N,
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where εni is a random variable uniformly distributed in [0, 1/n], εni s are independent,

and εni is independent of Ui. Next, we show that Un
i have bounded joint density

function.

P{x1 − dx1 ≤ Un
1 ≤ x1, · · · , xN − dxN ≤ Un

N ≤ xN}

=

∫ x1−dx1

x1−dx1−1/n

...

∫ xN−dxN

xN−dxN−1/n

dF (U1, · · · , UN)

∫ x1−U1

x1−dx1−U1

ndεn1 ...

∫ xN−UN

xN−dxN−UN

ndεnN

= nNdx1...dxN

∫ x1−dx1

x1−dx1−1/n

...

∫ xN−dxN

xN−dxN−1/n

dF (U1, · · · , UN)

Thus, the joint density function of Un
i satisfies

pUn1 ,...UnN (x1, ...xn) = nN
∫ x1−dx1

x1−dx1−1/n

...

∫ xN−dxN

xN−dxN−1/n

dF (U1, · · · , UN )

≤ nN .

Hence, Un
i s have bounded joint density functions. Let ~vn∗ satisfy

P{Un
i + vn∗i ≥ max

j 6=i
(Un

j + vn∗j )} = ri, i = 1, · · · , N,

where vn∗N = 0. Note that the sequence {~vn∗} is bounded. Thus, there exists a

subsequence that converges; i.e.,

lim
k→∞

vnk∗i = v∗i , i = 1, · · · , N.

In the following, we focus only on this convergent subsequence.

For notational convenience, we write

Wi = Ui + v∗i , i = 1, · · · , N,

W k
i = Unk

i + vnk∗i , i = 1, · · · , N,

r′i = P{Wi > max
j 6=i

Wj}, i = 1, · · · , N,

∆ri = ri − r
′
i, i = 1, · · · , N.

Let Y be a random varialbe. Then, limε→0 P{0 < Y < ε} = 0. Hence, for any

δ > 0, there exists ε > 0 such that P{0 < Y < 10ε} < δ. In other words, for any

δ > 0, there exists ε > 0 such that

P{max
j 6=i

Wj < Wi < max
j 6=i

Wj + 10ε} < δ, i = 1, · · · , N. (2)
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P{Wi < max
j 6=i

Wj < Wi + 10ε} < δ, i = 1, · · · , N. (3)

For this ε, there exists K such that for any k > K, we have 1/nk < ε and

|vnk∗i − v∗i | < ε, i = 1, · · · , N.

Next, we will show that

r′i − δ ≤ P{W k
i ≥ max

j 6=i
W k
j + 4ε} ≤ r′i.

If W k
i ≥ maxj 6=iW

k
j + 4ε, then we have

Ui +
1

nk
+ v∗i + ε ≥ W k

i ≥ max
j 6=i

W k
j + 4ε ≥ max

j 6=i
(Uj + v∗j − ε) + 4ε

⇒ Ui + v∗i ≥ max
j 6=i

Uj + v∗j + ε > max
j 6=i

Uj + v∗j

⇒ Wi > max
j 6=i

Wj .

Note that P (A) ≤ P (B) if the occurrence of event A guarantees the occurrence of

event B. Using this fact, we have

P{W k
i ≥ max

j 6=i
W k
j + 4ε} ≤ P{Wi > max

j 6=i
Wj} = r′i.

Furthermore, if Wi > maxj 6=iWj + 8ε, then we have

Unk
i + vnk∗i + ε ≥ Ui + v∗i ≥ max

j 6=i
Unk
j − ε+ vnk∗j − ε+ 8ε

⇒ W k
i ≥ max

j 6=i
W k
j + 4ε.

Hence,

P{W k
i ≥ max

j 6=i
W k
j + 4ε} ≥ P{Wi > max

j 6=i
Wj + 8ε}

= P{Wi > max
j 6=i

Wj} − P{max
j 6=i

Wj < Wi ≤ max
j 6=i

Wj + 8ε}

≥ r′i − δ.

The second inequality is due to (2). In summary, we have

r′i − δ ≤ P{W k
i ≥ max

j 6=i
W k
j + 4ε} ≤ r′i, i = 1, · · · , N. (4)
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In the following, we are going to construct tie-breaking probabilities. Let Mk
i be

the event {maxj 6=iW
k
j ≤W k

i < maxj 6=iW
k
j + 4ε}. We have

ri = P{W k
i ≥ maxW k

j } = P{Mk
i }+ P{W k

i ≥ max
j 6=i

W k
j + 4ε}, i = 1, · · · , N.

Substitude it into (4), we have

∆ri ≤ P{Mk
i } ≤ ∆ri + δ. (5)

Let x be an event that tie occurs and Cx be the set of users that achieve the

maximum value of Ui + v∗i ; i.e., Cx = {i1, i2, · · · , il}, where l ≥ 2, and x is the event

Ui1 + v∗i1 = Ui2 + v∗i2 = · · · = Uil + v∗il > max
i/∈Cx

Ui + v∗i .

Let Xi = {x : x ∈ X ∩ i ∈ Cx}; i.e., Xi is the set of tie events where user i is one of

the users that achieve the maximum. We have

P{Mk
i } =

∑
x∈Xi

P{Mk
i |x}P{x}+ P{Mk

i ∩Wi > max
j 6=i

Wj}+ P{Mk
i ∩Wi < max

j 6=i
Wj}. (6)

Note that

P{Mk
i ∩Wi > max

j 6=i
Wj}

= P{Mk
i ∩Wi > max

j 6=i
Wj + 8ε}+ P{Mk

i ∩max
j 6=i

Wj < Wi ≤ max
j 6=i

Wj + 8ε}

≤ P{Mk
i ∩W

k
i > max

j 6=i
W k
j + 4ε}+ P{max

j 6=i
Wj < Wi ≤ max

j 6=i
Wj + 8ε}

≤ P{max
j 6=i

Wj < Wi ≤ max
j 6=i

Wj + 8ε}

≤ δ,

and

P{Mk
i ∩Wi < max

j 6=i
Wj}

= P{Mk
i ∩Wi + 8ε < max

j 6=i
Wj}+ P{Mk

i ∩Wi < max
j 6=i

Wj ≤Wi + 8ε}

≤ P{Mk
i ∩W

k
i + 4ε < max

j 6=i
W k
j }+ P{Wi < max

j 6=i
Wj ≤Wi + 8ε}

≤ P{Wi < max
j 6=i

Wj ≤Wi + 8ε}

≤ δ.
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Substitute these two inequalities into (6) to get

P{Mk
i } − 2δ ≤

∑
x∈X

P{Mk
i |x)P (x) ≤ P{Mk

i }.

Substituting the above into (5),

∆ri − 2δ ≤
∑
x∈X

P{Mk
i |x}P (x) ≤ ∆ri + δ.

Because we chose δ arbitrarily, we have

lim
k→∞

∑
x∈X

P{Mk
i |x}P (x) = ∆ri.

Because P{Mk
i |x} is bounded, we have a subsequence such that

lim
l→∞

P{Mkl
i |x} = pi(x), i ∈ Cx,

and pi(x) = 0 if i /∈ Cx.

Because ∑
x

pi(x)P (x) = ∆ri.

we have

P{Ui + v∗i > max
j 6=i

Uj + v∗j}+
∑
x

pi(x)P (x) = ∆ri + r′i = ri.

Hence, there exist ~v∗ and a tie-breaking probability such that

P{Q∗(~U)} = ri, i = 1, · · · , N,

where

Q∗(~U) = argmax
i=1,···,N

Ui + v∗i ,

and when a tie occurs (event x), the policy Q∗ chooses user i with probability pi(x).

�

So far, we have proved Lemma 1. Recall that in the resource-based fairness

scheduling problem, we define the policy Q∗ as follows:

Q∗(~U) = argmax
i

(Ui + v∗i ), (7)

where the v∗i s are chosen such that:
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1. mini(v
∗
i ) = 0,

2. P{Q∗(~U) = i} ≥ ri for all i,

3. For all i, if P{Q∗(~U) = i} > ri, then v∗i = 0.

In the following, we will construct v∗i s that satisfy the above conditions. First, set

~v0 = 0. Let

Q(~U) = argmaxUi + v0
i ,

where ties are broken randomly. If

P{Q(~U) = i} ≥ ri, i = 1, · · · , N,

then ~v∗ = ~v0 = 0 satisfies all the conditions required. Otherwise, there exists a

nonempty set of users, B, such that

P{Q(~U) = i} < ri, i ∈ B.

We can consider B as the set of unfortunate users, which have to take advantage of

other users to satisfy their QoS requirements. Let L be the number of users in B.

Without loss of generality, we assume that B = {1, 2 · · · , L}.

Let

U ′L+1 = max
i/∈B

Ui,

r′L+1 = 1−
∑
i∈B

ri,

U ′i = Ui, i = 1, · · · , L,

r′i = ri, i = 1, · · · , L.

Following the lemma, for random variables U ′1, · · · , U
′
L+1, there exists ~v′ and tie-

breaking probabilities such that

P{Q(~U ′) = i} = r′i, i = 1, · · · , L+ 1.

Note that v′L+1 = mini=1,···,L+1 v
′
i. Otherwise, there exists i such that P{Q(~U ′) = i} <

r′i for some i ∈ B.
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Let the policy Q be

Q(~U) =

 Q(~U ′) if Q(~U ′) ≤ L,

argmaxi>LUi if Q(~U ′) = L+ 1,

where ties are broken randomly if Q(~U ′) = L+ 1. We stop if the following conditions

are satisfied:

P{Q(~U) = i} = ri, i ∈ B

P{Q(~U) = i} ≥ ri, i /∈ B.

Then, we set

v∗j = 0, i /∈ B

v∗j = v′j − v
′
L+1 ≥ 0, i ∈ B.

On the other hand, if there exists users such that

P{Q(~U) = i} < ri,

where i > L, then we move these users to set B and implement the same procedure.

Note that we can have at most N steps because at each iteration the number of users

in B increases at least by one. �

A.6 Proof of Convexity

We next prove Prop. 7. Suppose ~C1 and ~C2 are two achievable performance vec-

tors. We will show that for any 0 ≤ a ≤ 1, ~C = a~C1+(1−a) ~C2 is also achievable. Let

~C1 be achieved by policy Q1 and ~C2 be achieved by policy Q2. Define a “combined”

policy Q by

Q(~U) =

 Q1(~U) if A = 1

Q2(~U) otherwise,

where A is a random variable such that P{A = 1} = a. Then ~C is achieved by policy

Q. �
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A.7 Proof of Asymptotic Performance Bound

In this section, we prove the asymptotic results presented in Prop. 8.

Proof : It is straight-forward to show that E(Zn) = O(n). We have

Zn = max
i
Ui ≤ |U1|+ · · ·+ |UN |

⇒ E(Zn) ≤ E(|U1|) + · · ·+ E(|Un|) ≤ Cn.

Hence, E(Zn) = O(n).

Next, we prove the second part of the proposition. For any ε0 > 0, there exists α

such that 1 < α < 1/(1− ε0). Let

F (x) =

 1− 1
xα

x ≥ 1

0 x < 1.

We will show that if the Uis are i.i.d. random variables with the above distribution

function F , then

lim
n→∞

E(Zn)

n1−ε
=∞.

Let

bn = n1/α,

Yn = Zn/bn,

H(x) =

 exp(−x−α) if x > 0,

0 otherwise,

E(W ) =

∫ ∞
0

1−H(x) dx,

where W is a random variable with the distribution function H(x). Note that 0 <

E(W ) <∞. Let

Fn(x) = P{Yn ≤ x}

= P{Zn ≤ bnx}

= (P{Ui ≤ bnx})
n

=


(
1− 1

xαn

)n
if x ≥ n−1/α

0 otherwise.
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Because

lim
n→∞

(
1−

1

xαn

)n
= exp(−x−α), x > 0,

Yn converges to W in distribution1. Next, we show that E(Yn) converges to E(W ).

Note that
(
1− 1

x

)x
is an increasing function of x for x > 1.2 Hence, for x > 1 and

n ≥ 1, we have

Fn(x) =

[(
1−

1

xαn

)xαn] 1
xα

≥

(
1−

1

xα

)xα 1
xα

= F (x).

Let ε > 0 be given. Because Ui has finite mean, there exists M ′ > 1 such that∫ ∞
M ′

1− Fn(x) dx ≤

∫ ∞
M ′

1− F (x) dx ≤ ε/3. (8)

Furthermore, because W has finite mean, there exists M >M ′ such that∫ ∞
M

1−H(x) dx ≤ ε/3.

Define function f by

f(x) =

 M if x ≥M,

x otherwise.

Then f(x) is a bounded continuous function. Because Yn converges to W in distri-

bution,

lim
n→∞

E(f(Yn)) = E(f(W )).

Hence, there exists L such that for n > L,

|E(f(Yn))−E(f(W ))| ≤ ε/3.
1This convergence is also a result due to theories in extreme order statistics. We prove it here for
completeness and convenience of readers.
2Note that ln(1 + y) ≤ y for y ≥ 0. Let f(x) = x ln(1 − 1/x) for x > 1. Because f ′(x) =
ln(1− 1/x) + 1/(x− 1) = 1/(x− 1)− ln(1 + 1/(x− 1)) ≥ 0, f(x) is an increasing function of x for
x > 1.
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Furthermore, because

P (Yn ≤ x) = P (f(Yn) ≤ x), 0 ≤ x < M,

we have

E(Yn) = E(f(Yn)) +

∫ ∞
M

1− Fn(x) dx.

From (8) and M ′ < M , we have

|E(Yn)−E(f(Yn))| ≤ ε/3.

Similarly,

|E(f(W ))− E(W )| ≤ ε/3.

Hence, for the given ε > 0, we have that for n > L,

|E(Yn)− E(W )|

≤ |E(f(Yn))− E(f(W ))|+ |E(f(Yn))−E(Yn)|+ |E(f(W ))− E(W )|

≤ ε.

Thus,

lim
n→∞

E(Yn) = E(W );

i.e.,

lim
n→∞

E(Zn)

n1/α
= E(W ).

Recall that α < 1/(1− ε0). Hence,

lim
n→∞

E(Zn)

n1−ε0
=∞.

�
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