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Abstract—Cognitive radio gives users the ability to switch
channels and make use of dynamic spectrum opportunities.
However, switching channels takes time, and may affect the
quality of a user’s transmission. When a cognitive radio user’s
channel becomes unavailable, sometimes it may be better waiting
until its current channel becomes available again. Motivated
by the recent FCC ruling on TV white space, we consider the
scenario where cognitive radio users are given the foreknowledge
of channel availabilities. Using this information, each user must
decide when and how to switch channels. The users wish to exploit
spectrum opportunities, but they must take account of the cost of
switching channels and the congestion that comes from sharing
channels with one another. We model the scenario as a game
which, as we show, is equivalent to a network congestion game in
the literature after proper and non-trivial transformations. This
allows us to design a protocol which the users can apply to find
Nash equilibria in a distributed manner. We further evaluate how
the performance of the proposed schemes depends on switching
cost using real channel availability measurements.

I. INTRODUCTION

With the unprecedented growth in the number of mobile
devices and wireless services, the radio frequency spectrum is
becoming increasingly valuable. On one hand, it is extremely
difficult and time-consuming to obtain new unallocated spec-
trum. On the other hand, recent measurements reveal that many
existing licensed bands are widely underutilized. Cognitive
radio technology has the great potential to alleviate spectrum
scarcity by allowing cognitive radio devices to opportunisti-
cally access underutilized licensed spectrum while protecting
the performance of licence holders [1].

Channel opportunities of cognitive radio users depend upon
the activities of the license holders. When a license holder is
inactive, its channel is available to the cognitive radio users.
When the license holder is active, cognitive radio users must
either cease transmission in that channel (in a spectrum overlay
mode), or insure the amount of generated interference to the
licence holder is below a certain threshold (in a spectrum
underlay mode).

To utilize channel opportunities, cognitive radio users need
spectrum mobility [1]. In other words, cognitive radio users
need the ability to switch channels quickly to avoid significant
interference with licence holders, to make use of spectrum
opportunities, and to reduce the amount of interference they
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Fig. 1. An illustration of the frequency-time space. Each white (gray) block
represents a time slot when a channel is available (not available). A user has
prior knowledge of these channel availabilities, and plans when and how to
switch channels (a sample plan is represented by a route connected by red
arrows).

cause to each other1. Ideally, cognitive radio users should be
able to switch channels without causing any disruption to their
current transmissions. However, in practice switching channels
will inevitably cause disruption, in the forms of delay, potential
packet loss, and the possibility of a broken transmission [4].
Therefore, cognitive radio users must balance the benefit and
the cost of switching channels.

Channel switching has been extensively studied in cognitive
radio networks, particularly in cases where users have no prior
knowledge and channel availabilities change stochastically
[10]. The problems in those scenarios turn out to be quite
complex and often do not have closed-form solutions. In
this paper, we consider the scenario where users have prior
knowledge about the availabilities of multiple channels, over
the next T time slots (i.e., they are given information about
which frequency-time blocks will be available). Given this
information, cognitive radio users need to formulate a spec-
trum mobility plan about when and how they should switch
channels, to maximize their quality of service (see Fig. 1).
A spectrum mobility plan corresponds to a route through
frequency-time. The horizontal axis represents time (divided
into T discrete time slots), whilst the vertical axis represents
frequency (divided into discrete channels). Switching channels
corresponds to a diagonal movement through frequency-time.

The question we wish to answer is when and how should a
user switch channels? In particular, if the channel availability
is changing rapidly, when is it worth the cost of switching
channels, instead of simply waiting until the current channel
becomes available again? This decision problem is nontrivial
for a single cognitive radio user, and even more challenging

1The act of switching channels is also known as spectrum handoff .
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when multiple cognitive radios compete to access the same set
of available channels.

The motivation for studying channel switching using prior
knowledge is as follows. Consider the TV white space, which
is one of the most important licensed bands made accessible
to cognitive radio users. The FCC has ruled that users must
be given access to a predictive database which details the
times when the license holders will be active/inactive over the
next 24 hours [5]. Having this information alleviates the need
for frequent sensing and reduces the probability that license
holders suffer disruption from erroneous users. Our model
allows us to characterize various properties of user behavior
in such networks, all as functions of the switching cost.

We acknowledge that, in the TV white space scenario, chan-
nel availability changes at a large time scale, and so the cost of
switching channels becomes negligible in comparison to the
benefits of doing so. However, there are many scenarios, such
as cellular networks and radars, where channel availabilities
are much more dynamic [6]. Note that we do not advocate
that third-party unlicensed users should access cellular spec-
trum. Instead, cognitive radio technologies can be applied to
scenarios where macro-cells (high priority users) and femto-
cells (low priority users) of the same service provider share
spectrum dynamically. Because both macro and femto-cells
belong to the same service provider and are both connected
to the cellular backbone, there are clear incentives and means
for macro-cells to share spectrum availability data with femto-
cells to improve the overall efficiency and user experience.
Furthermore, in a part of the 5GHz band, unlicensed WiFi
devices are required to scan for radar signals and yield to radar
transmissions. Radar scanning is semi-periodic and highly
sensitive to interference. Here, channel availability information
is readily available and can significantly benefit the protection
of radar performance, and improve cognitive radio user’s per-
formance. Although these networks do not (yet) include prior
knowledge on channel availability, it seems likely that such
information will be made available in the future for the same
reasons that motivated the FCC’s recent ruling on TV white
space (e.g., better spectrum access efficiency, lower overhead,
and better licence holder performance protection). For ex-
ample, consider a macro-cell serving voice, video streaming,
and data users. Encoded voice traffic is semi-periodic. Video
streaming traffic and data traffic can tolerate hundreds of
milliseconds of delay. Therefore, the macro-cell base station
can plan its transmissions and announce the schedule ahead
of time so that femto-cells can act accordingly.

The problem of optimizing a spectrum mobility scheme
based on prior knowledge of channel availabilities is compli-
cated. On one hand, users wish to switch channels so that they
can utilize spectrum opportunities and avoid interfering with
each other. On the other hand, users wish to avoid the quality
of service disruption that comes from switching channels too
often. The optimal spectrum mobility plan for a single user can
be determined using a shortest path algorithm. The multiple
user case is essentially a game (see Section II). The strategies
correspond to spectrum mobility plans. The payoff a user gets

Fig. 2. Spectrum mobility games with 4 users. When a user visits an available
channel (denoted by a white frequency time-block), it gains a payoff which
decreases with the congestion level (i.e., the number of users on that channel).
We show Nash equilibria for four versions of the game with different values
of the switching time s and the switching cost k.

depends upon the quality of visited channels, the number of
times they switch, and the amount of interference they suffer
(see Fig. 2 for example).

The central result of this paper is that the spectrum mobility
game is equivalent to a symmetric network congestion game
(see Section III for detailed definitions). This result is very use-
ful in practice, because symmetric network congestion games
have nice properties2 which allow us to design fast protocols
for optimizing spectrum mobility plans in a distributed fashion
(see Section IV). In Section V we use our protocol to simulate
spectrum mobility. In Section VI we discuss related work on
spectrum mobility. Our contributions can be summarized as
follows:
• A general model of spectrum mobility planning: We

present a general game theoretic model of spectrum
mobility with prior knowledge of heterogenous channels.
Our model is applicable to both spectrum underlay and
spectrum overlay networks.

• Efficient algorithms for spectrum mobility planning: We
provide a fast algorithm to determine the best single-user
decision, as a function of the other user’s plans (Corollary
3). We also provide a decentralized protocol which allows
multiple users to organize themselves into Nash equilibria
without communicating with each other.

• Analysis of behavior: We use simulations to study the be-
havior of players at Nash equilibria of spectrum mobility

2Congestion games have the finite improvement property, meaning that if
the players keep improving their strategy choices asynchronously, then a Nash
equilibrium will eventually be reached.
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games.
• Application to real data: We evaluate the performance

of the proposed spectrum mobility planning algorithms
using real channel availability data.

Due to space limitations, full proofs are given in the online
technical report [12].

II. THE SPECTRUM MOBILITY GAME MODEL

A. Users, Channels, Time Slots, and Database

In this section we shall define the spectrum mobility game.
The game involves a set N = {1, 2, ..., N} of players,
representing N cognitive radio users. There is a set C =
{1, 2, ..., C} of C heterogenous channels. Time is divided into
discrete time slots. The length of a time slot can be chosen to
be any value that is suitable for the application scenario. The
users have prior knowledge of the channel availabilities, i.e.,
they can access a database that describes the availability of all
channels over the next T time slots. We let T = {1, 2, ..., T}
denote the set of these time slots. By checking the database,
users plan how to act over the coming T time slots.

B. Channel Quality Functions

The database shows the channel quality functions f(c,t)(x)
for each frequency-time point (c, t) with channel c ∈ C and
time t ∈ T . This function presents a user’s payoff for using
channel c at time t, when there are a total of x users on
channel c at time t. It is non-negative and non-increasing in
x, reflecting that a user’s benefit from using a channel may
decrease with the congestion level.

Our model allows each frequency-time point (c, t) to have a
different channel quality function. This flexibility allows us to
model many practical scenarios. We can allow one channel
to have a higher bandwidth than another, i.e., f(c,t)(x) >
f(c′,t)(x). We can also allow the benefit of using a channel
to change over time in a way which represents license holder
dynamics. For example, in a spectrum overlay network, we
could set f(c,t)(x) = 0 for all x to represent that the license
holder of channel c is active at time t, and the channel cannot
be accessed by the users. In a spectrum underlay network, we
may have f(c,t)(x) = 0 for all x > J , which represents the
case where the license holder of channel c will not tolerate
more than J cognitive radio users transmitting concurrently
on that channel.

C. Switching Time s and Switching Cost k

We assume that it takes a fixed number of s ≥ 0 time slots
for a user to switch channels. More precisely, if a user initiates
switching at the end of time slot t, then it will land on the
destination channel at the beginning of time slot t+s+1. We
suppose that users do not gain any benefit, or generate any
interference, while they are in the middle of switching.

A user must also pay a cost of k ≥ 0 every time it switches
channels. This allows us to model several possible negative
effects of switching:
• Additional power consumption: This applies to a network

scenario where a user needs to establish the connection

Fig. 3. Routes through the graph Gmob, representing different spectrum
mobility plans available to a user. Vertices of Gmob represent frequency-time
blocks (c, t), and they are associated with channel quality functions f(c,t)(x).
A zero function means that this channel is not available at this time. Users
gain payoffs from visiting vertices. Users pay costs for traversing diagonal
edges (which represent channel switching). In this case, we have N = 1 user,
the switching cost is k = 1, and it takes s = 1 time slots to switch channels.
The optimal spectrum mobility plan is shown in red (with thicker edges), and
leads to a total payoff of b 10

1
c − 1 + b 4

1
c+ b 4

1
c = 17.

to the new destination channel before tearing down the
connection on the old channel.

• Probability of connection failure: This represents a small
risk of not being able to establish the new connection due
to various reasons.

• Cost of sensing: Although users have access to the
database, a user may still need to engage in costly sensing
to verify that its target channel is indeed available and/or
to evaluate the channel quality and congestion level.

D. Graph Representation of Channel Switching

We model how users can switch channels with a directed
graph3 Gmob = (V mob, Emob). Routes through the graph
Gmob represent routes through frequency-time (see Fig. 3).
When a user travels along a route, it gains payoffs at the
vertices (which represent frequency-time blocks), and pays
costs at the edges (which represent switching channels -at a
cost of k, and staying on the same channel -at a cost of zero).

The graph Gmob = (V mob, Emob) is defined as follows:
• The vertex set is V mob = C × T . Vertex (c, t) ∈ V mob

represents channel c in time slot t, i.e., a frequency-time
block.

• The edge set is Emob = Emob
stick ∪ Emob

switch. The set
Emob

stick represents the actions where users do not switch
channels. Here Emob

stick is the set of all edges of the form
((c, t), (c, t+ 1)) such that c ∈ C and t ∈ {1, 2, ..., T −
1}. The set Emob

switch represents the actions where users
switch channels, i.e., the set of all edges of the form
((c, t), (c′, t+ s+ 1)) such that c, c′ ∈ C : c 6= c′ and
t ∈ {1, 2, ..., T − 1− s}.

In the red route in Fig. 3, the user switches from channel 2
to channel 1 at the end of time slot 1. This corresponds to
traveling along the edge ((2, 1), (1, 3)) ∈ Emob

switch. The user
arrives on channel 1 at the beginning of time slot 3 (and

3In a directed graph G = (V,E), a vertex u ∈ V is said to be connected
to a vertex v ∈ V if and only if (u, v) belongs to the edge set E.
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effectively wastes s = 1 time slot switching). After this, the
user sticks on channel 1. This corresponds to traveling along
the edge ((1, 3), (1, 4)) ∈ Emob

stick.
A route r in a graph is a sequence of connected vertices

(i.e., each vertex is connected to its successor in the sequence).
We let V(r) denote the set of vertices traversed by the
route r (including source and destination vertices), and let
E(r) denote the set of edges traversed by the route r. In
Fig. 3, for example, the route r = ((2, 1), (1, 3), (1, 4)) has
vertices V(r) = {(2, 1), (1, 3), (1, 4)} and edges E(r) =
{((2, 1), (1, 3)) , ((1, 3), (1, 4))}.

E. Spectrum Mobility Game

A spectrum mobility game is specified by a 6-tuple
Γmob = (N , C, T , (f(c,t))(c,t)∈C×T , s, k), where N is the set
of players, C is the set of channels, T is the set of time slots,
f(c,t) is the (non-negative, non-increasing) function describing
the quality of channel c at time t, s is the number of time slots
required for a user to switch, and k is the switching cost. The
information included in the 6-tuple can be used to construct
the graph Gmob. Next we will explain how the players choose
their strategies (routes across the graph) to maximize their
payoffs.

Let Rmob denote the set of all routes through Gmob, where
each route goes from a vertex (c, 1) with c ∈ C to a vertex
(c′, T ) with c′ ∈ C. Here c can be the same as c′. Here Rmob

is the strategy set of each player, as each player (user) n ∈ N
selects a route in Rmob in the spectrum mobility game.

In our game, we suppose that every player selects its strat-
egy (route) from Rmob before the first time slot, i.e., a route
in Rmob is a spectrum mobility plan and does not change
after the user actually starts to move through frequency-time.
In fact, we can show that the users will not change their plan
after the first time slot even if they are allowed to do so, as
users know the complete network information at the beginning
of the game already.

Players accumulate payoffs for traversing vertices in their
routes, while paying costs for traversing edges. The payoff a
player gets from traversing a vertex v = (c, t) ∈ V mob is equal
to its channel quality function f(c,t)(x), where x is the total
number of players which select routes that traverse this vertex.
In other words, x is the total number of users of channel c
at time t. Each edge e ∈ Emob is associated with a fixed
cost cost(e). If e ∈ Emob

stick, then cost(e) = 0 because sticking
upon a channel does not cost anything. If e ∈ Emob

switch, then
cost(e) = k because a user must pay a cost of k every time
it switches channels.

In the spectrum mobility game, each player n ∈ N selects
a route Xn ∈ Rmob. A strategy profile X = (Xn′)n′∈N ∈(
Rmob

)N
consists of each player’s choice of route. The total

payoff received by a player n within the strategy profile X is
given by

PAYmob
n (X) =

∑
v∈V(Xn)

fv(ψX(v))−
∑

e∈E(Xn)

cost(e), (1)

where ψX(v) = |{n′ ∈ N : v ∈ V(Xn′)}| is the total number

Fig. 4. This spectrum mobility game is identical to the one depicted in
Fig. 3, except we have N = 2 users. The red user’s strategy is the same as
in Fig. 3, while the blue users strategy consists of staying on channel 1 for
all of the T = 4 time slots. The edges and vertices shared by the two users
at the Nash equilibrium are colored purple. The blue user will gain a payoff
of 4 upon time slot 1 and time slot 2, will only gain a payoff of 2 upon time
slots 3 and 4 (because it has to share this channel with the newly arrived
red user). In this Nash equilibrium, the red user will gain a total payoff of
f(2,1)(1)− 1+ f(1,3)(2)+ f(1,4)(2) = 10− 1+2+2, while the blue user
will gain a total payoff of f(1,1)(1) + f(1,2)(1) + f(1,3)(2) + f(1,4)(2) =
4 + 4 + 2 + 2.

of users whose chosen routes visit the vertex v. The first sum
in (1) represents the payoff that user n gains from transmitting
on channels. The second sum in (1) represents the cost it pays
due to switching.

A Nash equilibrium4 of a game is a strategy profile where
no player can benefit from changing its strategy unilaterally.
See Fig. 4 for such an example. In the next section, we
will show that every spectrum mobility game is equivalent
to a symmetric network congestion game. This interesting and
highly non-trivial result allows us to develop a fast protocol
to find Nash equilibria of spectrum mobility game.

III. THE CORRESPONDENCE BETWEEN SPECTRUM
MOBILITY GAMES AND NETWORK CONGESTION GAMES

A. Definition of Symmetric Network Congestion Games

Congestion games [13] have been used to study many
network resource allocation scenarios. The basic idea behind
congestion games is that a player needs to pay a cost de(x)
when he uses a resource e with a congestion level x. In a
network congestion game [14], the resources are edges within
a graph. Each player selects a route from their source vertex to
their destination vertex, in an attempt to minimize the cost they
pay from traversing congested edges. For example, network
congestion games can model how drivers select routes through
cities. A network congestion game is symmetric [15] when
every player selects a route from the same source vertex to
the same destination vertex.

Formally, a symmetric network congestion game
(N , G, a, b, (de)e∈E) consists of the following:
• A set N = {1, 2, ..., N} of players.
• A directed graph G = (V,E).
• A common source vertex a ∈ V and a common destina-

tion vertex b ∈ V .

4In this paper we only discuss pure strategies and pure Nash equilibria.
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• A non-increasing and non-negative cost function de(·) for
each edge e ∈ E.

A strategy in a symmetric network congestion game is a
route from a to b in G. The strategy set of each player is
equal to the set R∗ of all routes from a to b in G. A strategy
profile X = (Xn′)n′∈N ∈ (R∗)N involves each player n′

choosing a route Xn′ ∈ R∗. The total cost to a player n in a
strategy profile X is

COSTn(X) =
∑

e∈E(Xn)

de(ψ
∗
X(e)), (2)

where E(r) is the set of edges in route r and ψ∗X(e) = |{n′ ∈
N : e ∈ E(Xn′)}| is the total number of players using edge
e.

Since symmetric network congestion games are congestion
games, they have the finite improvement property [16]. This
means that when players keep improving their strategy choices
asynchronously where no more than one player changes its
strategy at any given time, the system will eventually reach a
Nash equilibrium.

B. Correspondence with Spectrum Mobility Games

Spectrum mobility games and symmetric network conges-
tion games are similar. They both involve players selecting
routes through a graph structure in an attempt to avoid
congestion from one another. However, the two types of games
differ in several ways:

1) In a symmetric network congestion game, each player
tries to minimize its total cost function COSTn(X);
whereas in the spectrum mobility game, each player tries
to maximize its payoff function PAYmob

n (X).
2) In a symmetric network congestion game, a player’s

cost only depends on the edges belonging to its chosen
route; whereas in the spectrum mobility game, a player’s
payoff depends on both the edges and the vertices
belonging to its chosen route.

3) In a symmetric network congestion game, each player
selects a route which goes from the same source to
the same destination; whereas in the spectrum mobility
game, the players may pick different starting points
(c, 1) and end points (c′, T ).

On the other hand, we can convert a spectrum mobility game
into to a symmetric network congestion game by making the
following three alterations to the spectrum mobility game (note
how these undo the respective differences listed above):

1) Convert payoff maximization into cost minimization: We
transform the spectrum mobility game (within which
players wish to maximize payoffs) into a regret min-
imization game. In any given time slot, a player’s
regret is equal to the maximum possible payoff5 Q =
max{f(c,t)(1) : c ∈ C, t ∈ T } minus the payoff
gained in the spectrum mobility game. For example,
usage of channel c at time t leads to a payoff gain of
f(c,t)(x), hence we associate it with a regret function of

5Q is chosen to be large enough such that the regret is always nonnegative.

Fig. 5. The spectrum mobility game shown in Fig. 3 and Fig. 4 can be
converted into a symmetric network congestion game by making 3 alterations.
Here Q = 10.

Q−f(c,t)(x). Switching channels leads to a payoff gain
of −k and takes s time slots, hence we associate it with
a regret function of sQ+k. The total regret incurred by
a player n over T time slots is TQ−PAYmob

n (X), and
is equal to the cost in the corresponding symmetric net-
work congestion game. This regret minimization game
is equivalent to the spectrum mobility game.

2) Replace vertices with edges: Replace every vertex in
the spectrum mobility game with an edge which is
associated with the same cost/regret function as the old
(replaced) vertex.

3) Add virtual source and destination vertices: Add a
virtual source vertex α and a virtual destination vertex
Ω, which are connected to all the starting points and
ending points (respectively) with zero cost edges.

Figure 5 illustrates how the three alterations transform a
spectrum mobility game into a symmetric network congestion
game. Mathematically, we can state the following results.

Theorem 1: Every spectrum mobility game Γmob is equiv-
alent6 to some symmetric network congestion game Γnet.

For the proof sketch, see Appendix A. For a detailed proof,
see the technical report [12].

Corollary 2: Every spectrum mobility game has the finite
improvement property, and hence has at least one pure Nash
equilibrium.

The best response BΓmob

n (X−n) of a player n within
the strategy profile X of the spectrum mobility game Γmob

is the strategy which maximizes n’s payoff, given the list

6We say two games are equivalent when there is a weak isomorphism from
one to the other [17]. Such a mapping preserves the payoff orderings of the
strategies, the finite improvement property, and the Nash equilibria.
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X−n = (X1, .., Xn−1, Xn+1, .., XN ) of strategies of the other
players in strategy profile X. The best response can be a
set with many elements in general, but we assume there is
some deterministic tie breaking mechanism so BΓmob

n (X−n)
is single valued. Corollary 2 implies that if players keep
asynchronously updating their strategies according to their best
responses, then a Nash equilibrium will eventually be reached
(see Fig. 6).

Corollary 3: A player in the spectrum mobility game can
determine its best response route choice BΓmob

n (X−n) within
polynomial time by using a shortest path finding algorithm.

For the proof sketch, see Appendix B. For a detailed proof,
see the technical report [12]. Corollary 3 implies that multiple
users can quickly adapt to changes in each others’ plans.

IV. PROTOCOL TO FIND NASH EQUILIBRIA

The correspondence between spectrum mobility games and
symmetric network congestion games allows us to design
a spectrum mobility planning protocol. The purpose of this
protocol is to allow the users to select their routes through
frequency-time in a mutually acceptable and efficient way, i.e.,
reaching a Nash equilibrium.

Our protocol is based on the finite improvement property
shown in Corollary 2. The key idea is to let players asyn-
chronously improve their spectrum mobility plans (i.e., routes
across the graph) until a Nash equilibrium is reached. We will
first present a deterministic version of the protocol, with an
illustrative example shown in Fig. 6. Later we shall discuss
how the protocol can be adapted to various scenarios.

Suppose we have a spectrum mobility game Γmob =
(N , C, T , (f(c,t))(c,t)∈C×T , s, k). We assume that players are
indexed in a way that is publicly known,7 and have the ability
to communicate their spectrum mobility plans to each other.
We write X = (X1, X2, ..., XN ) as the list of current the
spectrum mobility plans selected by the players. This gets
updated as the protocol runs.

Algorithm 1 is the spectrum mobility planning protocol. It
has two phases. During the initialization phase, each player
chooses the strategy BΓmob

0 (∅), which is the best response
assuming that they are the only user in the network (see Fig. 1).
In other words, BΓmob

0 (∅) would maximize a player’s total pay-
off if the other players did not exist. The initial route choices of

7For example, the users’ indices could correspond to the order in which
they entered the network or their MAC addresses.

Algorithm 1: Spectrum Mobility Planning Protocol

Input: A spectrum mobility game Γmob

Output: A Nash equilibrium X of Γmob

1 for n = 1 to N do
2 Xn ← BΓmob

0 (∅);

3 while X is not a Nash equilibrium do
4 for n = 1 to N do
5 Xn ← BΓmob

n (X−n);

6 return X;

Fig. 6. An illustration of our spectrum mobility protocol being used to
generate a Nash equilibrium. Initially each of the four players selects the
same route through frequency-time, then the players do asynchronous best
response updates (in the order 1, 2, 3, 4, 1, 2, 3, ...) until a Nash equilibrium
is reached. In this case the system reaches a Nash equilibrium after 5 updates.

players are not essential; players can select any routes and the
protocol will still converge eventually. In the second iterative
updating phase, each player updates its strategy to the best
response Xn = BΓmob

n (X−n), and the finite improvement
property guarantees that a Nash equilibrium will be achieved.

One can use similar ideas to make an alternative random
protocol, by letting the players start with random strategies
Xn, and having them perform best response updates in a
random and asynchronous order. This could be more suitable
in networks within which users do not acknowledge a common
ordering. To implement this random protocol, users need
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to pass messages to each other through a common control
channel.

Comparing with a random protocol, one major advantage
of the deterministic protocol is that it actually does not
require users to communicate. As the output of the protocol in
Algorithm 1 is deterministic, each user could run the protocol
locally, compute the same Nash equilibrium, and then choose
the corresponding routes accordingly.

To implement the deterministic approach, users need to
know the initial state of each user and a commonly agreed
user ordering. In networks where the set of users remains
constant (e.g., wireless sensor networks), the users ordering
could be fixed initially. In dynamic scenarios, users would need
to keep track of when each other enter and leave the system
in order to maintain a common ordering. Alternatively, users
could conservatively assume that all users in their vicinity are
active. This would lead to inefficiency, because users would
be trying to avoid incurring interference from absent phantom
users in order to avoid explicit communications. The user’s
actions under such assumptions may not correspond to Nash
equilibria.

One limitation of our protocol is that it is not (theoretically)
guaranteed to converge within polynomial time (although in
our simulations the protocol does converge very quickly, with
run time increasing quadratically in N,C, and T ). On the
other hand, when the channel quality functions (and switching
costs) of the spectrum mobility game are integer valued, the
game corresponds to a symmetric network congestion game
with integer valued cost functions. There is a polynomial time
algorithm (described in [15]) which can be used to find a Nash
equilibrium of such symmetric network congestion games.
We provide more details about this observation, and other
protocols in the technical report [12].

V. SIMULATIONS

We applied our proposed models to the study of spectrum
mobility using real channel availability data. The data we
used (from [18]) was a record of the availabilities of C = 3
channels (850-870MHz band) over a total length of 1 minute
in Maryland. The time is divided into T = 600 time slots that
are 0.1 seconds long each. The data can be represented by a
3× 600 binary matrix D∗ such that

D∗c,t =

{
1, if channel c is available on time slot t
0, otherwise. .

The detailed data trace can be found in our online technical
report [12]. We use the database D∗ to set up a spectrum
mobility game within which each frequency-time block (c, t)
has a channel quality function f∗(c,t)(x) = D∗c,t/x.

We studied the behavior of N = 10 users at the Nash
equilibria (computed using our spectrum mobility protocol).
We consider a switching cost k = 0, and investigate the effect
of the switching time s (see Figs. 7, 8, and 9). Out of the
3 × 600 frequency-time blocks, only 1173 are available. In
each Nash equilibrium computed, at least one player accesses
each available frequency-time block; because of the form of

Fig. 7. At the Nash equilibria of the spectrum mobility game, the average
number of times that a user switches decreases with the switching time s.

Fig. 8. At the Nash equilibria of the spectrum mobility game, the fairness
among users tends to increase with the switching time s.

the channel quality functions f∗(c,t), the average payoff of
the players is thus equal to 117.3 in all cases. Figure 7
shows that the average number of switching per user decreases
as the switching time s increases. Figure 8 suggests that
the Nash equilibria produced by our algorithm are fairer
when the switching time is larger. One possible explanation
is that when switching time is smaller, the first players to
select their strategies within our best response based algorithm
have more freedom to secure spectrum opportunities than the
players which formulate their plans later. Figure 9 shows that
the average congestion level of a block decreases with the
switching time s. This is because when s is larger, more users
spend a longer time switching channels, and thus cause less
congestions to users who are not switching.

VI. RELATED WORK

Most studies of spectrum mobility have focused on the
stochastic channel models. The main challenge in this line of
work is to learn the state of the channel availability and balance
among multiple users. For example, in [10], [19], [25], the
authors study the multi-channel probing and access problems.
The studies involve partially Observable Markov Decision
Process (POMDP) or multi-armed bandit methods. In [20],
the authors characterized the tradeoff between maximizing the
total throughput of licence holders and cognitive radio users
and minimizing licence holders’ interference.
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Fig. 9. At the Nash equilibria of the spectrum mobility game, the average
number of users of an available frequency-time block decreases with the
switching time s.

The stochastic scenarios are complex with many factors to
consider, and thus it is in general difficult to get closed-form
solutions and clean engineering insights. Thus many results
focus upon evaluating the efficiency of spectrum mobility
schemes under more simplified channel availability models.
The authors in [7] and [8] use a two-dimensional Markov
channel availability model, and do not distinguish between
different channels. In [9], the authors consider spectrum mo-
bility in a network with two users. In [11], the efficiency of
two spectrum mobility schemes are compared using queuing
theory. In our paper, because of the assumption that channel
availabilities are known in advance, we can analyze the system
performance precisely under a wide range of assumptions of
channel conditions, switching costs, and the number of users.

Centralized and distributed schemes for spectrum alloca-
tions or multi-channel dynamic spectrum access have been
considered in many recent papers (e.g., [2], [3], [10], [19],
[21]–[23], [25]–[31]). Our work differs because we consider
complete prior knowledge of channel availability. Complete
knowledge provides much better primary user protection as
well as overall spectrum efficiency. It also provides an upper
bound on the performance of systems with stochastic channel
availabilities. Also we explicitly model the competition of
multiple users and formulate it as game. To the best of our
knowledge, this is the first work formulating the problem as
a game under the assumption of complete prior knowledge of
channel availability.

VII. CONCLUSION

Our main contribution is the formulation of the spectrum
mobility game, which is a very general model of spectrum
mobility planing. A key step of the analysis is the non-trivial
conversion from the spectrum mobility game to the symmetric
network congestion game. At the first glance, the problem of
determining the optimum spectrum mobility plan of a single
user looks like a longest path problem, where one attempts to
maximize total quality of the frequency-time blocks visited.
Our key observation is that this can be converted into a
regret minimization problem, which essentially corresponds
to a shortest path problem with non-negative edge weights.
This is the crucial step within the conversion, which naturally

maps the spectrum mobility game into a symmetric network
congestion game in the case with multiple users.

The above conversion has allowed us to use tools from
the theory of graphs and congestion games to develop useful
spectrum mobility protocols. In particular, we showed that
there exists a polynomial time protocol which can be used
to determine the optimal policy in the one user case, and
characterize Nash equilibria in the multiple user case when
the payoff functions are integer valued.

The converting method proposed in this paper can also be
applied to other scenarios with spatial reuse and heterogeneous
users (who have different tastes for the same channel). A
scenario with spatial reuse may be translated into a congestion
game on a graph similar to those considered in [13], [32].
User heterogeneity can be accounted for by making the payoff
functions player specific. It will be interesting to study the
conditions under which a pure Nash equilibrium exists, as the
existence is not guaranteed in generalized network congestion
games that result from such a conversion [32], [33].

In future work we shall study how the amount of prior
knowledge a user affects its performance. We also intend to
extend our models from deterministic cases to stochastic cases
where there is some uncertainty about the future availability
of channels. Stochastic games seem to be appropriate models
for these scenarios. This generalization will be challenging,
but should be applicable to an even wider range of cognitive
radio scenarios where the users are given limited information
about the future. We also intend to extend the idea of modeling
sequential game choices using graph paths to other game
theoretic scenarios.

Due to space limitations, we have included the full proofs
of all results in this paper as well as more algorithms and data
in the online technical report [12].

APPENDIX A
PROOF SKETCH OF THEOREM 1

Sketch of proof We describe the main points of our con-
structive proof here. Our equivalent network congestion game
Γnet = (N , Gnet, α,Ω, (dnet

e )e∈Enet) is played upon the
directed graph Gnet = (V net, Enet). We will show routes
through Gnet correspond to strategies within Γmob. The graph
Gnet has vertex set V net = {α,Ω} ∪ (C × T × {0, 1}) and
edge set Enet = Enet

α ∪Enet
0 ∪Enet

stick ∪Enet
switch ∪Enet

Ω , where
Enet
α = {(α, (c, 1, 0)) : c ∈ C}, Enet

0 = {((c, t, 0), (c, t, 1)) :
c ∈ C, t ∈ T }, Enet

stick = {((c, t, 1), (c, t+ 1, 0)) : c ∈ C, t ∈
{1, 2, ..., T − 1}}, Enet

switch = {((c, t, 1), (c′, t+ s+ 1, 0)) :
c, c′ ∈ C, c 6= c′, t ∈ {1, 2, ..., T − 1 − s}}, and Enet

Ω =
{((c, T, 1),Ω) : c ∈ C}. We associate each edge e ∈ Enet

with a non-decreasing and non-negative cost function dnet
e ,

which is defined as follows:

• If e ∈ Enet
α ∪ Enet

stick ∪ Enet
Ω , then dnet

e (x) = 0, ∀x.
• If e ∈ Enet

switch, then dnet
e (x) = s.Q+ k, ∀x.

• If e ∈ Enet
0 , then e must be of the form e =

((c, t, 0), (c, t, 1)) and so we let dnet
e (x) = Q− f(c,t)(x),

∀x.
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Here Q = max{f(c,t)(1) : c ∈ C, t ∈ T }. Let Rnet

denote the set of all routes r from α to Ω in Gnet. Now
Rnet is the strategy set of each player n ∈ N , in the
symmetric network congestion game Γnet. The total cost
incurred by a player n ∈ N for playing the strategy
Yn ∈ Rnet within the strategy profile Y is given by
COSTnet

n (Y ) =
∑
e∈E(Yn) d

net
e (|{n′ ∈ N : e ∈ E(Yn′)}|).

Now, the bijection I : Rmob 7→ Rnet which sends
each route r∗ = ((c1, t1), (c2, t2), ..., (cm, tm)) ∈
Rmob (through Gmob) to the strategy I(r∗) =
(α, (c1, t1, 0), (c1, t1, 1), (c2, t2, 0), (c2, t2, 1), ..., (cm, tm, 0),
(cm, tm, 1),Ω) ∈ Rnet essentially converts Γmob into
Γnet. More precisely, if we consider that each player
n in Γmob is trying to minimize a total cost function
COSTmob

n (X) := −PAYmob
n (X) then we have

COSTmob
n (X) = COSTnet

n ((I(Xn′))n′∈N )− TQ, ∀n ∈ N ,
for each strategy profile X ∈

(
Rmob

)N
. Hence we have

converted Γmob into Γnet by using the [17] strong game
isomorphism I and then a constant shift of the global cost
functions by −TQ. �

APPENDIX B
PROOF SKETCH OF COROLLARY 3

Sketch of proof The best response of a player n in a strat-
egy profile Y of a symmetric network congestion game
(N , G, a, b, (de)e∈E) is the shortest path from the source
vertex a to the destination vertex b within the graph G′

obtained by assigning a weight of de(x + 1) to each edge
e of G = (V,E). Here x = |{n′ ∈ N : n′ 6= n, e ∈ E(Yn′)}|
is the number of other players using edge e. This shortest
path through G′ (i.e., the best response) can be determined
in polynomial time using Dijkstra’s shortest path algorithm.
Hence, given a strategy profile X of Γmob, we can deter-
mine player n’s best response by applying the isomorphism
I (defined in the proof to Theorem 1) to convert X into
the equivalent strategy profile Y = (I(Xn′))n′∈N of the
equivalent symmetric network congestion game Γnet. We can
then determine n’s best response r∗ in Γnet (using a shortest
path algorithm), and now I−1(r∗) will be n’s best response
in Γmob. �
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