Network Traces of Virtual Worlds: Measurements and
Applications

*
Yichuan Wang
Department of Computer Science
University of California
. Davis, CA
yicwang@ucdavis.edu

Jatinder Pal Singh

Deutsche Telekom Inc.

R&D Laboratories USA
.. LosAltos, CA
j.singh@telekom.com

ABSTRACT

Although network traces of virtual worlds are valuable to ISPs (In-
ternet service providers), virtual world software developers, and
research communities, they do not exist in the public domain. In
this work, we implement a complete testbed to efficiently collect
and analyze network traces from a popular virtual world: Second
Life. We use the testbed to gather traces from 100 regions with
diverse characteristics. The network traces represent more than 60
hours of virtual world traffic and the trace files are created in a well-
structured and concise format. Our preliminary analysis on the col-
lected traces is consistent with previous work in the literature. It
also reveals some new insights: for example, local avatar/object
density imposes clear implications on traffic patterns. The devel-
oped testbed and released trace files can be leveraged by research
communities for various studies on virtual worlds. For example,
accurate traffic models can be derived from our trace files, which
in turn can guide developers for better virtual world designs.

Categories and Subject Descriptors

H.5.1 [Information Systems Applications]: Multimedia Informa-
tion Systems

General Terms

Measurement

1. INTRODUCTION

Virtual worlds, such as Second Life [18], Habbo Hotel [4], and
Playstation Home [15], are computer-simulated environments that

*This work was done when Y. Wang was an intern at Deutsche
Telekom R&D Labs USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MMSys’11, February 23-25, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0517-4/11/02 ...$10.00.

105

Cheng-Hsin Hsu
Deutsche Telekom Inc.
R&D Laboratories USA

Los Altos, CA
cheng-hsin.hsu@telekom.com
Xin Liu
Department of Computer Science

University of California

~ Davis, CA
xinliu@ucdavis.edu

allow many users to interact with each other via graphical avatars.
Virtual worlds enable a plethora of interesting applications span-
ning entertainments, 3D shopping malls, immersive distance learn-
ing, virtual workspace, and online art galleries, and are thus becom-
ing increasingly popular. For example, Linden Research reports
that there were more than a million users logged in to Second Life
in July 2010 [16].

While most online games distribute game data to users using op-
tical media such as DVDs, virtual worlds consist of user-generated
and dynamic in-world objects that can only be downloaded on-
demand. The bandwidth requirements of virtual worlds, therefore,
are significantly higher than online games [6]. The high-volume
real-time traffic generated by virtual worlds imposes great chal-
lenges to the best-effort Internet. Hence, network traces of virtual
worlds are very valuable to ISPs (Internet service providers) for bet-
ter network planning [1] and software developers for better virtual
world design [12].

To the best of our knowledge, there exists no publicly available
network traces of virtual worlds. Research groups resort to build-
ing their own utilities to capture traces, which is a tedious and time
consuming task. In this work, we conduct extensive experiments in
a popular virtual world to collect network traces in different envi-
ronments (e.g., diverse avatar and object density) and with various
avatar actions (e.g., walk and run). Most importantly, we share the
resulting traces with research communities to stimulate the future
research on virtual worlds [17].

Our main contributions are summarized as follows:

o A fully automated testbed is developed for efficient and large-
scale virtual world traffic analysis.

e We collect Second Life traces from 100 diversified regions.
The total length of our traces is over 60 hours, and the result-
ing trace files are over 3 GB in size.

e We validate previous work in this area, and provide new in-
sights. For example, local avatar/object density has strong
correlation with traffic patterns, which was never reported in
the literature.

The rest of this paper is organized as follows. We review related
work in Sec. 2. We give an overview of virtual worlds in Sec. 3.
Sec. 4 describes our measurement methodology. We present the
network traces in Sec. 5. Sec. 6 briefly discusses some potential
applications and Sec. 7 concludes the paper.

2. RELATED WORK

Two types of traces have been collected from virtual worlds: (i)
traces of the locations and movements of avatars/objects and (ii)
traces of timestamped network packets. Traces of avatars/objects
are usually gathered by crawlers that traverse through many re-
gions of a virtual world. For example, Varvello et al. [20] build
a crawler that collects information about avatars, objects and server
status from ~ 13,000 regions. La and Michiardi [7] and Liang et
al. [9] also build crawlers to derive mobility models for avatars.
Some avatar/object traces are made publicly available [11], which
are complementary to the network traces we collected.

Network traces from virtual worlds have also been collected in
various studies [1-3,5, 8, 12]. Liang et al. [§] implement a Second
Life proxy to collect network packets exchanged between clients
and servers. Fernandes et al. [2] use packet sniffer to capture pack-
ets from/to an official Second Life client. Kinicki and Claypool [5]
conduct a similar, but more comprehensive measurement study.
Ferreira and Morla [3] develop a Second Life testbed to system-
atically collect network traces resulted by various avatar actions.
Oliver et al. [12] collect network traces from real Second Life users:
30 users participating in a virtual conference. They also gather net-
work traces from controlled avatar actions in two regions. To the
best of our knowledge, unlike our work, none of the network traces
used in [1-3,5, 8, 12] is publicly available.

3. SECOND LIFE: AN OVERVIEW

In this section, we give a high-level overview on Second Life,
which is a popular virtual world. Second Life follows the client-
server network model. Companies such as Linden Research [18],
and non-profit organizations such as OSgrid [14] host Second Life
servers, and users (or residents) use Second Life clients (called
viewers) to connect to these servers. The viewers support various
in-world actions, including stand, walk, run, fly, and teleportation.
Teleportation refers to an instant change of an avatar’s location. In
general, user commands are sent from viewers to servers for pro-
cessing and the results are transmitted back to viewers for rendering
and displaying. Second Life is built and customized by users, and
users create new 3D structures using primitives (or prims, which
are basic 3D objects) as building blocks, and upload image files as
textures for these 3D structures. These 3D objects are distributed
to viewers on-demand, i.e., the servers transmit a 3D object to a
viewer once the object is visible to that viewer. Viewers usually
cache recently downloaded 3D objects.

Multiple servers are used in Second Life, and they can be classi-
fied into two groups: simulation and administration servers. Sim-
ulation servers run the logics to simulate physics in the virtual
world, and execute user scripts written in Linden script language
(LSL). LSL allows users to programmatically control objects’ be-
havior. As simulating physics is computationally intensive, the vir-
tual world is divided into more than 30,000 regions, where a typ-
ical region has a size of 256x256 m? and is managed by a simu-
lation server. Each viewer is connected to one or more simulation
servers, and is handed over to other simulation servers once the
avatar moves into different regions.

Administration servers include login, user, space, data, and util-
ity servers. Before participating in the virtual world, a viewer sends
the avatar’s username and password to the login server. Upon au-
thentication, the login server determines the start location of the
avatar and directs the viewer toward the simulation server manging
that location. During simulation, the user server routes instant mes-
sages, and the space server coordinates all the simulation servers
for a seamless, unified virtual world. The data server is essentially

106

a central database used by other servers, and the utility servers han-
dle miscellaneous tasks.

4. METHODOLOGY
4.1 Region Classes

Earlier works on Second Life consider very few regions. For
example, Kinicki and Claypool [5] and Liang et al. [8] only con-
sider three regions. While these studies reveal the implications of
avatar/object density on network traffic, the number of regions is
too small to interpolate the traffic patterns in regions other than
those chosen ones. To address this limitation, we choose many re-
gions with diverse avatar/object density as follows. We obtained
the complete region list from an online database' on Aug 20, 2010,
which contains 31,543 regions. We implement a region crawler,
which iteratively teleports an avatar to each region and gathers the
number of avatars/objects in it.

We successfully collected avatar/object density from 22,717 re-
gions. Missed regions are either too busy, private, or with adult con-
tents. The maximum number of avatars is 93, but most regions have
very few avatars, e.g., 57% of regions have only one avatar. The
maximum number of objects is 15,000, and the distribution is more
uniform compared to that of avatars. We divide the regions into 25
classes. We let X = {1,2,4,8,16,00} and Y = {0, 3000, 6000,
9000, 12000, oo}, and define class C;; (1 < 4,5 < 5)* be all
regions with number of avatars « € [X;, X;+1) and number of ob-
jects y € [Y5, Yit1). In our experiment, we collect network traces
from four random regions in each class. Although excluding private
or adult regions, the selected regions are statistically representative
in terms of object and avatar numbers. The collected trace shows
statistics similarity to previous work in which adult and private re-
gions were considered [20].

4.2 Actions and Scripts

Users interact with the virtual world through various actions,
such as stand, rotation (yaw, pitch, roll), walk, run, jump, fly, tele-
portation, and grab. We consider the following actions in our ex-
periments.

1. Stand: Stay in the current location. This can happen, e.g.,
when users chat by typing or speaking.

2. Walk: Walk straight, which can be due to keyboard inputs
or LSL scripts. The default walking speed is around 2 m/sec,
which may be changed through LSL scripts or affected by
other factors such as terrains.

3. Yaw: Change the avatar’s orientation. This occurs when
users check the surroundings through avatar’s eyes. Yawing
360 degrees takes about 5 secs.

4. Run: Run straight. This is similar to walk, except a different

avatar animation is rendered. The running speed is around 5
m/sec.

5. Fly: Take off from the ground, fly straight, and land on the
ground again. The flying speed is about 15 m/sec. Therefore,
avatars can fly across a 256x256 m? region in 17 to 25 secs.

6. Teleportation: Change location instantaneously.

With these actions, we define several scripts. Each script starts at
arandom location and runs for one minute. We program the viewer
to deliberately prevent avatars from crossing region boundaries. We
consider the following scripts.

"http://www.gridsurvey.com.
*In this paper, we use bold symbols to represent vectors.

D A.Av Crawler
Crawlel
Auatar] o (Regons |
Region Region
M Dispatcher
RN [Septs |
B dr
Region Region [Action
S Injector
Logger
Traces || | Bot Viewer

Figure 1: Second Life testbed setup.

1. Stand: Stand for one minute.

2. Yaw: Rotate avatar’s orientation for 12 secs, and repeat this
5 times.

3. Walk: Walk in a random direction for 12 secs, and repeat
this 5 times.

4. Run: Run in a random direction for 12 secs, and repeat this
5 times.

5. Fly: Fly in a random direction for 12 secs, and repeat this 5
times.

6. Teleportation: Teleport to a random location in the same
region, wait for 12 secs, and repeat this 5 times.

7. YWREFT: Sequentially perform four actions: yaw, walk,
run, and fly, each for 12 secs. Then teleport to a random
location in the same region and wait for 12 secs.

8. TFRWY: Reversed YWRFT script.

For scripts other than Yaw, we turn an avatar’s direction by directly
setting its orientation, which takes virtually no time to complete.

4.3 Testbed Implementation

We design and build a testbed to collect Second Life network
traces. We make the following decisions:

1. Modifying a GUI viewer. Viewers can be categorized into
two classes: GUI viewers and text-based chat clients. We
have augmented both a GUI viewer (Snowglobe [19]) and a
chat client (TestClient of LibOpenMetaverse [10]), and used
them to collect network traces. Our experimental results
indicate that chat clients ignore several multimedia packet
types, and may lead to unrepresentative traffic patterns.

2. Logging packets at the viewer. Packets can be logged: (i)
at a viewer, (ii) at a proxy, and (iii) with a packet sniffer, such
as Wireshark [21]. While using a proxy (or a packet snif-
fer) is easier than modifying a viewer to log network traces,
additional networking and processing latency may result in
deviated packet timestamps.

3. Using official Linden servers. While private servers can be
set up using the open-source OpenSim [13] implementation,
doing so prevents us from capturing the actual traffic patterns
in live Second Life networks.

Following these design decisions, we implement our testbed as
illustrated in Fig. 1. Our testbed contains two parts: Server on the
left, and the measurement tools, including Crawler, Dispatcher, and
Bot Viewer, on the right. We run the tools on a PC with 2.4 GHz
Intel processor, which is connected to the Internet via a dedicated
link with 10 Mbps bandwidth in both directions. The same link
is shared with common office applications such as emails and web
browsing. Next, we present our measurement tools in details.

107

1: Crawler collects avatar/object density of all regions and cate-
gorizes them into 25 classes

2: for all Class C; j, where 1 <i,j <5 do
3: Let C’ be four random regions from C;_;
4: for all Region 7 in C’ do
5 Dispatcher compiles eight scripts .S,
6: for all script s in S, do
7 Bot Viewer performs s

8 Bot Viewer saves traces of s into files
9 end for
0 end for
1: end for

Figure 2: Pseudocode to collect network traces.

Table 1: Packet trace format
Field Example Description
Timestamp 12834907204 | Unix Time in usec
Protocol ubP Transport protocol
Direction in Downlink or uplink
Remote IP 216.82.23.202 | IP address
Remote Port | 13001 TCP/UDP port
Packet Type | LayerData Second Life packet type
Payload Size | 81 Second Life packet size
Crawler. We implement Crawler based on TestClient of Li-

bOpenMetaverse [10]. Crawler first logins to the virtual world with
a starting region. It then checks its current location and aborts if
it’s not in the specified starting region. Last, Crawler sends a query
packet to Server for the number of avatars/objects in that region.
The regions are then classified into 25 classes (see Sec. 4.1 for de-
tails).

Dispatcher. Dispatcher is implemented in Python and Bourne
shell. Dispatcher first generates the eight scripts mentioned above
for each considered region. The avatar starts at random location
in each script. All the scripts are saved for future reference. Dis-
patcher then calls Bot Viewer to follow each script and collect net-
work traces.

Bot Viewer. We implement the Bot Viewer by adding two
new components: Action Injector and Message Logger, to Snow-
globe [19]. After logging in a region, Action Injector reads the
script created by Dispatcher, and injects actions into Bot Viewer.
Since we are doing this in the core engine of Bot Viewer, we can
accurately control the action time and collect exact location infor-
mation among other useful statistics. Bot Viewer exits after each
script is finished. We perform several sanity checks in Bot Viewer,
e.g., we rerun a script if a teleportation gets rejected or a login
authentication fails. Message Logger logs all network packets, in-
cluding their timestamp, size, type, and remote address. It also logs
the avatar’s location and surrounding avatar/object density.

4.4 Trace Collection

We systematically collect network traces of eight scripts from
100 regions with diverse characteristics. Fig. 2 shows the high-
level steps used in trace collection. The for-loop starting from lines
2, 4, and 6, iterate through the considered region classes, random
regions, and action scripts, respectively.

We collect network traces in two setups: uncached and cached.
We consider both cases because viewer cache can significantly re-
duce network traffic amount [6]. For uncached experiments, we

Table 2: Script record format Table 3: Location record format
Field Example | Description Field Example Description Field Ex. | Description
Type Script Record type Type Location Record type Local Objects 185 | Object density
No. Actions | 5 No. actions Timestamp | 12543524234 | Unix time Local Avatars | 3 Avatar density
Action 1 Walk 10 | Action Region Morris Region name || Global Objects | 949 | Object density
Action 2 Stand 20 | Action Global Pos. | 912,834,1 Pos. vector Global Avatars | 7 Avatar density
Local Pos. | 22,127,2 Pos. vector
Table S: Statistics trace format
Field Example | Description
Table 4: Action record format Region Morris Name of the region
Field Example Description Crawled Object Density | 9484 Object density from Crawler
Type Action Record type Crawled Avatar Density | 10 Avatar density from Crawler
Timestamp | 12543524234 | Unix time Global Object Density 9730.5 Mean global object density from Bot Viewer
Action Walk 10 Action Global Avatar Density 14.9 Mean global avatar density from Bot Viewer
Local Object Density 181.5 Mean local object density from Bot Viewer
Local Avatar Density 3.6 Mean local avatar density from Bot Viewer

instruct the viewer to clean its cache before running each script.
For cached experiments, we only clean the cache before running
the first script in a region, and for each region, we repeat the eight
scripts twice without cleaning the cache. The first run of the eight
scripts warms up the cache, and we collect network traces during
the second run. We started the trace collection on Aug 25, 2010.

5. TRACES
5.1 Format

To assist readers better utilizing the traces, we processed the raw
trace files into a well-structured and concise format. The trace files
contain lines of fields separated by a pipe character (). We define
the fields in the following.

Packet trace. Packet trace files log the traffic to and from the
Bot Viewer during each script execution. Each line represents a
Second Life packet, and lines are sorted based on timestamp. Ta-
ble 1 lists the fields of packet traces.

Location trace. Location trace file contains three types of
records: script, position, and action. Each record is saved in a line.
Script record appears at the beginning of each location trace file,
and indicates the planned actions of every script. Table 2 shows its
format. Location records are periodically saved with 1-sec interval.
As presented in Table 3, a location record indicates region name,
global/local position of our bot avatar, global avatar/object density
in the region, and local avatar/object density at the current location.
Action records are saved whenever the bot avatar performs a new
action. The timestamps, actions, and action parameters are saved
in action records, as illustrated in Table 4.

Statistics trace. Statistics trace reports avatar/object density
of each region. The numbers are computed across all experiments,
which provide readers the ground truth of the region characteristics.
Table 5 lists its fields.

5.2 Analysis

We report the characterizing statistics of the collected traces. We
consider three metrics: throughput, packet size, and interarrival
time. We consider six scripts (YWRFT and TFRWY are skipped
due to the space limitations). We first report the statistics of a ran-
domly chosen region Tokugawa. This region has 2531 objects and
1 avatar, and our bot avatar encountered 93 local objects and 1 local
avatar on average during the time of the trace collection.

108

Downlink traffic, uncached, Tokugawa. We show the Cumula-
tive Distribution Function (CDF) of downlink traffic for uncached
experiments in Fig. 3. Fig. 3(a) illustrates the correlation between
avatar action and downlink traffic, which is also observed in sev-
eral previous work, including [5]. Fig. 3(b) reveals that packets
can be categorized into two groups: ~200 bytes and ~1000 bytes.
We found that packets with size ~1000 bytes are mostly multime-
dia packets, such as texture packets. Fig. 3(c) shows that actions
impose insignificant impacts on interarrival time.

Uplink traffic, uncached, Tokugawa. We plot the CDF curves
of uplink traffic for uncached experiments in Fig. 4. Fig. 4(a) re-
veals that the uplink throughput is lower by an order of magnitude
comparing to downlink throughput (see Fig. 3(a)). Fig. 4(b) shows
that about 95% of the uplink packets are smaller than 200 bytes.
Fig. 4(c) shows that uplink interarrival time is higher than down-
link, and Stand and Teleport have higher interarrival time.

Cached, Tokugawa. We plot sample CDF curves for cached
experiments in Fig. 5. In Figs. 5(a) and 5(b), we observe a through-
put reduction of about 50% in both downlink and uplink, compared
to results from the uncached experiments (see Figs. 3(a) and 4(a)).
Fig. 5(c) shows that the number of packets with size ~1000 bytes
are significantly reduced when cache is used, which indicates a de-
cent amount of multimedia data were retrieved from the cache.

Downlink traffic, uncached, aggregated. Next, we report the
aggregated statistics across 100 regions. We plot the CDF curves
of downlink traffic for uncached experiments in Fig. 6. Uplink
and cached results are omitted due to the page limitations; inter-
ested readers can generate them from our trace files [17]. The CDF
curves in Figs. 6(b) and 6(c) are aligned with those in Figs. 3(b)
and 3(c). However, comparing Fig. 6(a) against Fig. 3(a), we found
that the correlation between action and throughput is weaker in ag-
gregated form: the CDF curves in Fig. 6(a) are quite close to each
other. This observation implies that avatar action may not be the
strongest factor affecting the traffic pattern.

Correlation between avatar/object density and traffic pat-
tern. To evaluate other factors affecting traffic patterns, we com-
pute the mean throughput, packet size, and interarrival time across
all action scripts of individual regions. We tried three types of den-
sity: crawled, global, and local, and found that local density has
the strongest correlation with the traffic pattern. We then plot a
few sample figures in Fig. 7 to illustrate how local avatar/object
density affects downlink traffic patterns in uncached experiments.

1001

100 - - ; 100
80 B 77' 80 80 r
S % X 60 X 60 I
: x :
4 —o—Stand ——Stand |t
o 40 },"l %Y'{;‘l;l o 40 :g:%ta{‘i)‘llld o 40 %Ya%‘ljl
v ——Walk —4—Walk ——Walk
20 y —4—Run 20 ——Run 20 —4—Run b
A -v-Fly -v-Fly -v-Fly
- - x-Teleport - % -Teleport| - x -Teleport
0 0 :
0 200 400 600 800 0 500 1000 1500 0 0.05 0.1 0.15 0.2
Throughput (kbps) Packet Size (bytes) Interarrival Time (seconds)
(@) (b) (©
Figure 3: Downlink statistics of an uncached region: (a) throughput, (b) packet size, and (c) interarrival time.
100 ‘ — ———t0 et
80 F
X 60 S i
B =
8 40 —&—Stand 8 —o=Stand f
—&— Yaw —&—Yaw
lR alk EVP}’alk
un b
20 -v-Fly foFllizn
0 - % -Teleport| y - = -Teleport| 0 - % -Teleport]
60 80 0 100 200 300 400 500 0 0.05 0.1 0.15 0.2
Throughput (kbps) Packet Size (bytes) Interarrival Time (seconds)
(@) (b) (©
Figure 4: Uplink statistics of an uncached region: (a) throughput, (b) packet size, and (c) interarrival time.
100 100+ ‘ . : 100 &—
80 - s) 80 801 "‘ —_?- --------- L
— B — . '::
X601 [} r X 60 < 60A L
& & &
i —o—Stand 40 ——Stand 1 ——Sta t
© ! {HY;“"I’I © —=—Yaw o 40 %%’E@q\?d
;g&lk 2 E\RNalk lgalk
un un q L
20 - S Fly 20 Sy
- x -Teleport 0 - = -Teleport] -x -Teleport|
0 0
0 100 200 300 400 0 10 20 30 40 0 500 1000 1500
Throughput (kbps) Throughput (kbps) Packet Size (bytes)
(@) (b) (©
Figure 5: Statistics of a cached region: (a) downlink throughput, (b) uplink throughput, and (c) downlink packet size.
100 100 gg{ 100 ‘ , ‘ . :
80 80 r
S X 60| e e X 60 ’
E E > E S
—6— —6— 4 —©-Stand |
O — '?/ta%?d o 40 —a— %’ta%\l;ld © 0 —&— Yac‘lél
——Walk ——Walk ——Walk
——Run 20 ——Run 20 —4—Run 8
{ -v-Fly -v-Fly -v-Fly
o - = -Teleport] 0 - = -Teleport o - % -Teleport
0 200 400 600 800 1000 0 500 1000 1500 0 0.05 0.1 015 02 025 03
Throughtput (kbps) Packet Size (bytes) Interarrival Time (seconds)
(@) (b) (©

Figure 6: Aggregated uncached downlink statistics: (a) throughput, (b) packet size, and (c) interarrival time.

109

500

?0.04
o~ : 'g . « Samples -
.g‘400, ° L 8003 : —— Cubic fitting E
= 8 X
s g 5
2300/ Eoo2 =
"eb = &
5 (3 : T; é t.
ﬁ 200+ A el « Samples E 0.01 ﬁ 200 !-:' . Samples
o~ —— Cubic fitting g H —— Cubic fitting
1005 " " " " " " ER) " " " " " " 100 " i i : :
100 200 300 400 500 600 - 100 200 300 400 500 600 2 4 6 8 10 12
Local Object Density Local Object Density Local Avatar Density
(@ (b) (©

Figure 7: Correlation between avatar/object density and traffic pattern: (a) throughput vs. local object density, (b) interarrival time
vs. local object density, and (c) throughput vs. local avatar density.

Fig. 7(a) shows a strong correlation between throughput and local
object density, which can be modeled by a cubic function. Simi-
larly, Fig. 7(b) reveals the correlation between interarrival time and
local object density, and Fig. 7(c) illustrates the correlation between
throughput and local avatar density.

6. APPLICATIONS

Traffic modeling in virtual worlds. Several research groups [1,
3] have pointed out that modeling network traffic of virtual worlds
is valuable for: (i) ISPs to configure their networks, (ii) virtual
world developers to achieve better Quality-of-Service (QoS), and
(iii) research communities to generate synthetic traffic for simula-
tions. Antonello et al. [1] model packet size and interarrival time
using several common distributions such as beta, gamma, and log-
normal. Ferreira and Morla [3] argue that there is a strong cor-
relation between packet size and interarrival time, and propose to
categorize the packets into multiple groups based on their sizes and
then model packets in each group with a separate distribution.

A few approaches can be applied to refine the existing models
in the literature. For example, packets of each packet type can be
modeled with a different distribution. In addition, as showed in
Sec. 5.2, region characteristics, such as avatar/object density, can
be considered as parameters in traffic models. These extensions
may not be possible without our extensive network traces.

Improving Quality-of-Service. Oliver et al. [12] observe that
some packet types are very sensitive to packet loss and delivery
delay, while others are more loss and delay tolerant. This leads to
a possible QoS mechanism that prioritizes packets on their packet
types for better user experience. Designing and evaluating such
QoS mechanisms heavily rely on our network traces and the traffic
models derived from them.

7. CONCLUSIONS

We implemented an automated testbed to systematically collect
network traces from virtual worlds. We used the testbed to gather
extensive traces from 100 diverse Second Life regions, which result
in more than 60 hour traffic trace and more than 3 GB trace files.
In comparison, most previous studies only consider a few regions,
and more importantly, they did not make their traces public. We an-
alyzed the virtual world traffic patterns using the collected traces.
Our results are consistent with work in the literature, and also re-
veal new insights, e.g., local avatar/object density imposes clear
implications on the downlink throughput. Our network traces [17]
can stimulate the research on virtual worlds.

110

8.
il

[2

3

[4]
[5]

[6

[7

[8

[9

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]
[19]

[20]

[21]

REFERENCES

R. Antonello, S. Fernandes, J. Moreira, P. Cunha, C. Kamienski, and

D. Sadok. Traffic analysis and synthetic models of Second Life. Multimedia
Tools and Applications, 15(1):33-47, February 2009.

S. Fernandes, F. Antonello, J. Moreira, D. Sadok, and C. Kamienski. Traffic
analysis beyond this world: the case of Second Life. In Proc. of ACM
International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV’07), Urbana-Champaign, IL, June 2007.
M. Ferreira and R. Morla. Second Life in-world action traffic modeling. In
Proc. of ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’10), pages 3-8, Amsterdam,
The Netherlands, June 2010.

Habbo Hotel official site, August 2010. http://www.habbo.com.

J. Kinicki and M. Claypool. Traffic analysis of avatars in Second Life. In Proc.
of ACM International Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV’08), pages 69—74, Braunschweig,

Germany, May 2008.

S. Kumar, J. Chhugani, K. Changkyu, D. Kim, A. Nguyen, P. Dubey,

C. Bienia, and Y. Kim. Second Life and the new generation of virtual worlds.
IEEE Computer, 41(9):46-53, September 2008.

C. La and P. Michiardi. Characterizing user mobility in Second Life. In Proc.
of ACM Workshop on Online Social Networks (WOSN’08), pages 79-84,
Seattle, WA, August 2008.

H. Liang, M. Motani, and W. Ooi. Textures in Second Life: Measurement and
analysis. In Proc. of IEEE International Conference on Parallel and
Distributed Systems (ICPADS’08), pages 823-828, Melbourne, Australia,
December 2008.

H. Liang, R. Silva, W. Ooi, and M. Motani. Avatar mobility in user-created
networked virtual worlds: Measurements, analysis, and implications.
Multimedia Tools and Applications, 45(1-3):163-190, October 2009.
LibOpenMetaverse official site, August 2010.
http://www.libsecondlife.org.

Measurement and analysis of large distributed virtual environments, August
2010.
http://nemesys.comp.nus.edu.sg/projects/secondlife.

I. Oliver, A. Miller, and C. Allison. Virtual worlds, real traffic: Interaction and
adaptation. In Proc. of ACM conference on Multimedia systems (MMSys’10),
pages 305-316, Scottsdale, AZ, February 2010.

OpenSimulator official site, August 2010. http://opensimulator.org.
OSgrid official site, August 2010. http://www.osgrid.org.

Playstation Home official site, August 2010.
http://us.playstation.com/psn/playstation-home.

Second Life economic statistics, August 2010.
http://secondlife.com/statistics/economy-data.php.
Second Life network traces, September 2010.
http://12.71.54.173/s1.

Second Life official site, August 2010. http://secondlife.com.
Snowglobe official site, August 2010.
http://snowglobeproject.org.

M. Varvello, E. Picconi, C. Diot, and E. Biersack. Is there life in Second Life?
In Proc. of ACM International Conference on Emerging Networking
Experiments and Technologies (CoNEXT’08), Madrid, Spain, December 2008.
Wireshark official site, August 2010. http://www.wireshark.org.

