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ABSTRACT
Machine learning methods have been widely used in mod-
eling and predicting network user experience. In this pa-
per, moving beyond user experience prediction, we propose
a closed-loop approach that uses data-generated prediction
models to explicitly guide resource allocation for user experi-
ence improvement. The closed-loop approach leverages and
verifies the causal relation that often exists between certain
feature values (e.g., bandwidth) and user experience in com-
puter networks. The approach consists of three components:
we train a neural network classifier to predict user experi-
ence, utilize the trained neural network classifier as the ob-
jective function to allocate network resource, and then eval-
uate user experience with allocated resource to (in)validate
and adjust the original model. Specifically, we propose a
dual decomposition algorithm to solve the neural network-
based resource optimization problem, which is complex and
non-convex. We further develop an iterative mechanism for
classifier optimization. Numerical results show that the dual
algorithm reduces the expected number of unsatisfied users
by up to 2x compared with the baseline, and the optimized
classifier further improves the performance by 50%.
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1. INTRODUCTION
Based on network measurement and user behavior data,

much recent research focuses on modeling and predicting us-
er experience in computer networks using machine learning
techniques, e.g., [1, 16, 6, 2, 10]. However, while it provides
important insights, user experience prediction itself is usu-
ally not the ultimate goal in networks. Ideally, a network
could identify users with poor experience and take proper
actions proactively to improve their experience (e.g., by al-
locating additional bandwidth to selected users). Thus, we
are facing a natural problem: given limited resources, how
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should we allocate them to multiple users to optimize the
overall experience?

To answer this question, we advocate a closed-loop ap-
proach that uses data-generated prediction models to ex-
plicitly guide resource allocation for user experience opti-
mization. This approach is illustrated in Fig. 1.
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Figure 1: A closed-loop framework in data-driven
resource allocation.

First, we start with a historical dataset with labeled user
experience and the corresponding feature values (including
network performance metrics). Based on the data, we con-
struct an appropriate user experience prediction model to
reflect the correlation between feature values and user ex-
perience. Then, we feed the constructed prediction model
into the resource allocation component as the objective func-
tion to optimize resource allocation for users based on their
real time feature values (network metrics). The output is
an appropriate resource allocation and users with improved
feature values. Last, the evaluation and data sampling com-
ponent samples data after resource allocation, validates or
invalidates the model, and adjusts the constructed predic-
tion model as needed.

In this framework, we leverage existing machine learning
methods for user experience prediction. Specifically, in this
paper, we use the neural network prediction model. We
focus on the resource allocation algorithms for the trained
model (Sec. 4) and how to adjust the classification model
based on evaluating resource allocation results to further
improve performance (Sec. 5).

The proposed framework has two benefits. First, the con-
structed classifier illustrates a quantitative relationship be-
tween the feature values and the user experience. Using
such a quantitative relationship and domain knowledge, we
are able to allocate network resources more precisely to re-
duce the expected number of users with poor experience,
in contrast to the typical approach of using abstract utili-



ty functions for resource allocation. Second, the framework
includes an evaluation component, where users are sampled
after resource allocation to validate or invalidate the causal
relationship hypothesis between the feature values and the
user experience. This step also provides further opportu-
nities to adjust the constructed prediction model, which is
shown to be highly beneficial.

The proposed framework has several challenges. First, it
is typically more challenging to optimize resource allocation
based on prediction models derived from real data than to
use utility functions with nice properties such as convexi-
ty [18, 8]. In our work, the neural network model generates
a complicated function, requiring us to solve a non-convex
and complex optimization problem. Second, choosing the
best classifier is difficult for the following reasons: 1) The
objective of the classifier is not to best classify all data sam-
ples, but to best guide resource allocation to improve user
experience with respect to ground truth; and 2) resource
allocation inevitably modifies the distribution of the users,
making the best classifier a moving target.

In this paper, we present a holistic solution using the
closed-loop framework in data-driven resource allocation.
Specifically, we make the following contributions:

• We propose using the closed-loop framework in data-
driven resource allocation. Inspired by the data-driven
framework introduced in [3], our framework incorpo-
rates the critical component of evaluation and feed-
back, which allows model validation and adjustment.

• We use a dual decomposition algorithm to solve the
neural-network-based optimization problem, which is
complex and non-convex. The algorithm applies to
scenarios with multiple types of resources, and enables
resource allocation that is both continuous and discrete
(Sec. 4).

• We formulate the classifier selection problem as a glob-
al functional optimization problem, which is highly
complex. We develop a set of principles and an it-
erative mechanism to systematically select better clas-
sifiers. (Sec. 5).

• We evaluate the proposed solution using both synthet-
ic and real world datasets (Sec. 6). Results indicate
our solution can reduce the expected number of un-
satisfied users by up to 2x compared to the baseline,
while the classifier optimization further improves the
performance by 50%.

2. RELATED WORK
The framework of data-guided resource allocation is first

proposed in our previous work [3] that includes the classifier
construction and resource allocation components. In [3], we
utilize a logistic regression classifier learned on labeled data
to guide resource allocation on unlabeled data. In compar-
ison, in this paper, we consider the neural network model,
which is more general, yet more challenging when used as
the objective function for resource allocation. More impor-
tantly, we study the closed-loop approach that allows us to
evaluate the impact of resource allocation and to select a
better classifier, which are critical, yet not considered earli-
er.

User experience has been studied extensively recent years
[1, 16, 6, 2, 10]. In [1], the authors use a month-long anony-
mous data collected from a cellular network provider to s-
tudy Quality of Experience (QoE) metrics including session
length, abandonment rate, and partial download ratio. The
relation between mobile video streaming performance and
user engagement from the perspective of network operators
is discussed in [16]. Using 27 TB video streaming traffic from
more than 37 million flows, the authors observe strong cor-
relations between many network features and abandonment
or skip rates.

A large body of literature considers learning-based cost-
efficient decision making in other applications. For example,
[9] discusses a high-level pipeline of data collection, predic-
tive model, and decision analysis. Specific combinations of
prediction and actions have been proposed in many areas,
such as clinical treatment [4] and route planning [20, 19, 14].
Certain preliminary studies have combined learning and re-
source allocation in data center networks [11, 5].

Network Utility Maximization (NUM) has been extensive-
ly studied, e.g., in [12, 7, 8, 21, 22, 23]. The difference be-
tween our work and their work lies in three aspects: 1) Our
utility function is learned from real datasets, and thus is
more complicated; 2) Our problem includes multiple type-
s of resources, which makes the problem more challenging;
3) We consider a closed-loop approach that optimizes the
utility function based on the feedback from the real system.

3. SYSTEM MODEL
In this section, we first present the notation used in this

paper, including the neural network classifier. Furthermore,
we discuss the research questions and introduce a baseline
algorithm for resource allocation.

3.1 Features and Resources
Consider users in a D-dimensional feature space, i.e., for

user i, we have

xi = [1, xi,1, xi,2, ..., xi,D]T , (1)

where xi,d is the value of feature d (d = 1, 2, ..., D), and
the constant feature with value 1 is included for the ease of
notation. Each user is associated with a label yi, which is
either positive (a user with poor experience) or negative.

There are K types of resources, and the resources allocat-
ed to user i are denoted by

ri = [ri,1, ri,2, ..., ri,K ]T . (2)

We assume that the relationship between the allocated re-
sources and the change of feature values is captured by a
function g(·). Given ri amount of resources, user i has its
feature vector updated to

xi
′ = g(xi, ri). (3)

Domain knowledge plays a significant role here in decid-
ing the function g(·). In computer networks, such domain
knowledge typically exists, e.g., how bandwidth or transmis-
sion power allocation affects users’ throughput. Such do-
main knowledge is widely used in current network resource
allocation schemes.

Clearly, not all feature values can be altered through re-
source allocation. For example, the device type is a static
feature that does not change regardless of network resource



allocation. We focus on the subset of features, named con-
trollable features, whose values can be altered by resource
allocation. The term “resource allocation” refers to general
actions that a network can take (potentially in cooperation
with users/content providers). Examples include bandwidth
allocation, frequency allocation, transmission power alloca-
tion, device reconnection, increasing buffering (e.g., for video
streaming), content prefetching or caching, selecting multi-
ple networks/interfaces, processing power allocation (e.g.,
in a cloudlet setting), etc. Note that the resources could be
new types of resources that are not used yet by the system,
or additional resources. For instance, in wireless communi-
cations users have already been allocated with bandwidth.
Additional bandwidth could be reserved to serve the poten-
tially unsatisfied customers.

We note that it is highly likely that network resource al-
location could only improve user experience of certain users,
but not all. The problem formulation here applies to the
case where resources are scarce. When the resources are
unlimited, then likely the user experience is constrained by
other factors, and could not be solved by network resource
allocation.

3.2 Neural Network Classifier
In the classifier construction component, the network s-

tarts with a set of samples with user experience labels. The
objective is to model the relationship between feature val-
ues and the corresponding labels. Different classifiers can be
adopted in the proposed framework, such as logistic regres-
sion [3], random forests and neural networks, depending on
the application scenarios.

We consider a neural network with three layers: input
layer, hidden layer and output layer. A three-layer neural
network can be realized by a two-layer logistic regression.

Let w = [w0, w1, w2, ..., wD]T be the weights of a logistic
regression model. Then, the likelihood of instance x being
positive is

η(w,x) = 1
1+exp(−wTx)

. (4)

Let H be the number of hidden neural nodes in the hidden
layer, and w1, w2,..., wH be the corresponding weights from
input features to the hidden nodes. The weight vector from
the hidden nodes to the output node is denoted by w0 =
[w0,0, w0,1, w0,2, ..., w0,H ]T . Note that w0,w1, ..., wH are
the parameters that need to be learned from the training
data.

Given the trained neural network classifier f(·), the like-
lihood of x being positive is

f(x) = η
(
w0, [1, η(w1,x), η(w2,x), ..., η(wH ,x)]T

)
.(5)

3.3 Problem Statement
In this paper, we study the following two questions: 1)

Given a classifier, how to allocate resources to the instances
in order to reduce the expected number of positives? 2)
How to improve the learned classifier by incorporating new
samples?

The first question implicitly hypothesizes a causal rela-
tionship between feature values and user experience, in which
case, allocating resources to change feature values would im-
prove user experience. We can first establish this relation-
ship by using domain knowledge. For example, according to
domain knowledge, user experience improves with increased

bandwidth allocation. Then we can further validate or in-
validate this causal relationship by the evaluation and da-
ta sampling component. We can see that the causal rela-
tionship diminishes after a certain threshold, as shown in
one of the evaluations (This is partially captured by user
side resource constraints in Eq. (8)). This closed-loop ap-
proach enables the practical application of data-driven re-
source allocation. It also addresses a drawback in the tra-
ditional abstract-utility-function-based resource allocation,
where the causal relationship is not evaluated, but taken for
granted.

With a learned classifier, a typical baseline algorithm al-
locates available resources as follows: in runtime, one first
uses the learned classifier to predict the labels of the user-
s. Then it allocates resources evenly among the predicted
positives. In other words, the baseline algorithm uses the
prediction model along with its trained weights to gener-
ate the prediction results (i.e., positives and negatives), and
then allocates resources based on the predictions. Note that
the learned classifier identifies a quantitative relationship
between the network performance metrics and user experi-
ence. However, this information is ignored in the resource
allocation step in the baseline algorithm.

By contrast, we explicitly use the quantitative relation-
ship captured by the trained classifier (i.e., Eq. (5)): We
incorporate the information in the resource optimization ob-
jective functions (Sec. 4). Numerical results show that our
proposed framework significantly improves the performance,
because it explicitly leverages the quantitative relationship
to allocate resources to users.

The above approach raises the question of what a good
classifier should be. We note that : 1) The objective of
the classifier is not to best classify all data samples, but
to best guide resource allocation in order to improve user
experience with respect to the ground truth; and 2) resource
allocation inevitably modifies the user distribution, and thus
changes the best classifier. Therefore, we need to adapt the
classifier to better quantify the relationship in the targeted
regions, where users are distributed as the result of resource
allocation. We study how to select such a classifier in Sec. 5.

4. RESOURCE ALLOCATION
In this section, we consider resource allocation based on

a neural network model learned from the training data. We
start with the problem formulation, and then propose a dual
algorithm to obtain a proper solution. Finally, based on the
intuition obtained from the dual algorithm, we propose a
Goal algorithm with lower complexity.

4.1 Resource Allocation Problem
Assume there are M users in the system, and the overall

available resources are R ∈ RK×1. Given the classifier f(·),
the multi-user resource optimization problem is formulated
as

(P-0) min
r1,r2...rM

∑M
i=1 f(g(xi, ri)); (6)

s.t.
∑M

i=1 ri ≤ R; (7)

ri ∈ Ri, (8)

where R is the total available resource for all users, and Ri

is the allocatable resource space for user i. Note that Ri

can be continuous, discrete, or hybrid. For example, user i’s



allocatable bandwidth is bounded by the his/her network
condition and data requirement. We also note that we can
include artificial bounds here so that the model is reason-
ably valid within the bound, in order to address the issue of
diminishing causal relationship, as discussed in Sec. 3.3.

This objective function is non-convex and complex be-
cause of the nature of neural networks. It is difficult, if
not impossible, to solve this problem efficiently by gradient-
based numerical methods. Therefore, we propose an algo-
rithm that solves this problem approximately in Sec. 4.2.
The idea is to decompose the Lagrangian of the optimiza-
tion problem into individual sub-problems. The Lagrangian
multiplier serves as a signal that coordinates users to ap-
proach to the global optimal solution.

4.2 Dual Algorithm
The dual algorithm is based on dual decomposition. First,

the dual algorithm determines a proper Lagrangian multi-
plier by solving the dual problem approximately. Then, in-
dividual users use the Lagrangian multiplier to maximize
their own utilities in a distributed manner.

Since xi is given for each user i, for the ease of notation,
denote f(g(xi, ri)) by fi(ri). The Lagrangian of (P-0) is

L(r1, r2, · · · , rM ,λ)=
∑M

i=1 fi(ri)+λT (
∑M

i=1 ri −R), (9)

where λ ∈ RK×1 is the Lagrangian Multiplier (LM). The
dual problem of (P-0) is

(D-0) max
λ

D(λ) =
∑M

i=1 ui(λ)− λTR; (10)

s.t. λ ≥ 0, (11)

where

(D-i) ui(λ) = min
ri

fi(ri) + λTri; (12)

s.t. ri ∈ Ri. (13)

Typically, λ is interpreted as the prices of the K types of
resources, and λTri is the cost of user i’s resource consump-
tion ri. As shown in (D-i), given λ, each user i minimizes
its own positive likelihood plus the cost of resource con-
sumption separately. Intuitively, when the cost of resource
k increases, a user tends to reduce the consumption of re-
source k. We discuss how to obtain the optimal solution for
problem (D-i), denoted by ri

∗(λ), in Sec. 4.3. Note that
(D-i) may have more than one optimal solutions.

Denote one of the optimal LM-s by λ∗, i.e.,

λ∗ = arg max
λ

min
r1,r2,··· ,rM

L(r1, r2, · · · , rM ,λ). (14)

Dual algorithm first finds the optimal LM λ∗, and then
allocates resources to users based on λ∗, subject to the re-
source constraints. When the system has only one type of
resource, binary search is used to find λ∗ efficiently, because
the resource consumed is a monotonically non-increasing
function of the price λ.

When there are multiple types of resources, we use a sub-
gradient method to update λ, as shown in Algorithm 1. For
a given λ(t), we obtain the solution r∗i (λ(t)) for problem
(D-i), and denote rneed as total resources consumed by user-

s. Note that R −
∑M

i=1 r
∗
i (λ(t)) is one of the subgradients,

we update the LM as follows (in Lines 3 to 4):

λ(t+ 1) =

[
λ(t)− a(t)(R−

∑M
i=1 r

∗
i (λ(t)))

]+

, (15)

where the step size a(t) should satisfy the following condi-
tions [12],

a(t)→ 0, as t→∞ and
∑∞

t=1 a(t) =∞. (16)

For instance, we can choose a(t) as β/t for some positive
constant β. After achieving the optimal LM λ∗, resources
are allocated in an arbitrary order, as shown in Algorithm 1
(Lines 7 to 10).

Algorithm 1: Dual Algorithm

Input : positive likelihood function
f1(·), f2(·), · · · , fM (·), λ(0), available resource
R, and convergence threshold ∆.

Output: r1
p, r2

p, · · · , rM p

1 while ‖λ(t+ 1)− λ(t)‖ ≥ ∆ do
2 ri

∗ = arg minri fi(ri)+λ(t)ri s.t. ri ∈ Ri (Sec. 4.3);

3 rneed =
∑M

i=1 ri
∗;

4 λ(t+ 1) =

[
λ(t)− a(t)(R− rneed)

]+

;

5 end
6 λ∗ = λ(t+ 1);
7 for user i do
8 ri

p = arg minri fi(ri) + λ∗ri (See Sec. 4.3)
s.t. ri ∈ Ri and ri ≤ R ;

9 Update available resource: R = R− rip;

10 end

Since (P-0) is non-convex, the gap between the primal
problem (P-0) and the dual problem (D-0) is not necessar-
ily zero. Therefore, the optimal solution for the dual prob-
lem may not be the optimal solution for the primal problem.
However, recent advances [21, 22, 23] on optimization with
separable objectives show the duality gap is bounded as the
number of users increases.

4.3 Resource Allocation for Individual Users
When (D-i) is convex, we can use the gradient-based

method to find the optimal resource allocation for each indi-
vidual user efficiently. If the utility function is non-convex,
but simple, we can develop heuristics. In this paper, we con-
sider the case where the utility function is both non-convex
and complex, but the number of resource types is limited.
In this case, we can use exhaustive search to obtain an ap-
proximate solution.

Considering the feasible solution set Ri of user i, assume
for resource k, the allocated resource is bounded by Rmax

i,k .
If the step size for this type of resource is ∆k, the num-
ber of searches performed will be tk = dRmax

i,k /∆ke. There-
fore, considering K types of resources, the overall number
of searches is

∏K
k=1 tk. The best among the

∏K
k=1 tk candi-

dates is chosen as the resource allocation solution for user
i.

Denote the partial derivative of g(x, r) on variable r by
g′d,k-s, where k is the resource index and d is the feature
index. We have the following lemma to decide a proper step
size for the exhaustive search.

Lemma 1. When the step size of the exhaustive search is
chosen as

∆k = ∆

K( HD
16

max
1≤h≤H,1≤d≤D

|w0,hwh,d| max
1≤d≤D

|g′d,k|+ λk)
,(17)



for resource k, the best solution found by the exhaustive
search is at least ∆-suboptimal.

Proof. Suppose θ : Rn×1 → Rm×1, and let 5xθ(x)
denote the derivative of θ at x, which is a m × n matrix.
According to the chain rule, we have

5rf(g(x, r)) = 5x′=g(x,r)f(x′)5r g(x, r). (18)

Since5xf(x) = η′(w0, [η(w1,x), η(w2,x), ..., η(wH ,x), 1]T )
[η′(w1,x), η′(w2,x), ..., η′(wH ,x)][w0,1w1, w0,2w2, ..., w0,HwH ]T ,
and |η′(∗)| < 1

4
, we have

5r f(g(x, r)) ≤ HD

16
max

1≤h≤H,1≤d≤D
|w0,hwh,d|

[ max
1≤d≤D

|g′d,1|, max
1≤d≤D

|g′d,2|, · · · , max
1≤d≤D

|g′d,K |]. (19)

Assume the optimal solution is r∗, then the exhaustive
search covers at least one r′ that satisfies

|r∗ − r′| ≤ [∆1,∆2, · · · ,∆K ]T . (20)

Therefore, we have

|f(g(x, r∗)) + λTr∗ − f(g(x, r′))− λTr′|

≤ max
r
| 5r f(g(x, r)) + λT ||r∗ − r′| ≤ ∆, (21)

i.e., r′ is a ∆-suboptimal solution.

Note that when Ri is discrete, we can try all candidates
and select the best.

4.4 Goal Algorithm
The dual algorithm may require a large number of iter-

ations to find the optimal LM. Here, we propose a Goal
algorithm with much lower complexity, inspired by the intu-
ition of the dual algorithm, i.e., users close to the boundary
area are allocated with resources with higher priority.

The dual algorithm decomposes the resource allocation a-
mong users by introducing the prices of resources. In this
part, we propose the Goal algorithm with low complexity
to decompose the multi-user optimization problem. First
of all, we define a goal v ∈ (0, 1) for the users. Basically,
the best v can be found by testing the candidate numbers
in the interval (0, 1) with a small step size. For the user-
s whose positive probability is larger than v, we calculate
the minimal total resource needed for them to achieve the
v. Note that the less total resource needed, the more effi-
cient it is to allocate resources to this user. Therefore, the
resources are allocated in a non-decreasing order of required
resources. This algorithm has much lower complexity since
no iteration is needed. However, the weakness is that all
types of resources are treated equally, which does not reflect
the different scarcities of resources.

We will compare the dual algorithm, the Goal algorithm,
as well as the baseline (discussed in Sec. 3.3), in Sec. 6.

5. CLASSIFIER OPTIMIZATION
In the proposed framework, the “Evaluation & Data Sam-

pling” component plays two important roles. First, it allows
us to validate or invalidate the causal relationship hypothe-
sized in Sec. 4. Specifically, similar to the idea of random-
ized test, if we see improved user experience after resource
allocation, we validate the causal relationship between the
network performance metrics and user experience. Second,
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Figure 2: The necessity of classifier optimization.

it allows us to further collect data samples and to adjust the
constructed classifier. Specifically, the resource allocation
scheme inevitably modifies the distributions of user perfor-
mance metrics, and new samples may appear in regions with
few or no existing samples. Thus, the original constructed
classifier needs to be adjusted.

Consider the following illustrative example, where posi-
tives (“+”) and negatives (“-”) are distributed in a 2D space
in Fig. 2. Given this dataset, the best classifier learned
from the existing positives and negatives could be a line in
the middle. This classifier separates positives and negatives
nicely and would be considered optimal under certain accu-
racy metrics. Based on this classifier, resources are allocat-
ed, where a subset of positives are moved to the boundary
area, shown as “o”. All these moved points are negative ac-
cording to the linear classifier. However, the ground truth
of these points turns out to be positive and the resource al-
location reduces no positives. This is because the original
dataset has no instance in the boundary area, and thus a lot
of prediction errors occur in this area. Therefore, the feed-
back from resource allocation is necessary to obtain a better
classifier that pays more attention to the targeted area of
the resource allocation.

In this section, we study the issue of classifier optimiza-
tion. We first discuss the desirable properties of a good
classifier and then propose an iterative method to obtain a
good classifier.

5.1 Optimal Classifier for Resource Allocation
We note that the goal of the classifier optimization here

is different from that of the traditional classifier. Tradition-
ally, the goal of the classifier is to maximize accuracy in
predicting user labels. In contrast, the goal of the classifier
here is to best guide resource allocation with respect to
the ground truth. In particular, it needs to better quanti-
fy the relationship in the targeted region: where users are
distributed as the result of resource allocation.

Specifically, denote the ground truth by a function G(x),
representing the positive probability for a given feature vec-
tor x. The set of classifiers that can be expressed by a
certain machine learning method (e.g. logistic regression,
neural networks) is denoted by F. Then, the task is to find
the optimal f∗ within F such that

(P-1) f∗ = arg min
f∈F

∑
i=1,2,...,M

G(g(xi, r
∗
i (f))), (22)

where [r∗1(f), r∗2(f)...r∗M (f)] is an optimal solution of (P-
0). If we know the ground truth G(x), we can find the



optimal f∗ by optimizing (P-1). However, G(·) is unknown
and thus we need to approximate it based on the sampled
data.

We are facing a problem of improving a classifier given cer-
tain historical data and opportunities to sample more data.
Techniques from active learning can be leveraged to solve
this problem. However, existing active learning algorithms
are mainly accuracy-centric, i.e., targeting at improving the
prediction accuracy. In contrast, user experience-guided re-
source allocation aims to improve the user experience and is
usually more sensitive to the model accuracy of the targeted
area of the resource allocation. Emphasis on the targeted
area will be helpful for improving user experience. Moreover,
a learning model tries to minimize the total loss function
over all training samples, and thus the distribution of train-
ing data will affect the trained model. In traditional active
learning, either streaming-based or pool-based learning, the
accuracy is measured under a certain “natural” distribution
that does not change. In comparison, our resource alloca-
tion schemes change the distribution, and thus, the “best”
model becomes a moving target and much more difficult to
obtain.

This problem also inherently requires an exploration v.s.
exploitation tradeoff, where we need to balance between op-
timizing the user experience based on the learned classifier
(exploitation) and improving the classifier by sampling more
data (exploration). However, the feature space is typically
huge and exploring all this space to obtain an accurate clas-
sifier will result in a large cost as noted in [17].

In practice, the problem is usually most sensitive to the
targeted area of the resource allocation. Thus, a classifi-
er that pays more attention to the points in the targeted
area may be sufficient for improving the resource allocation
performance. This principle motivates the design of the fol-
lowing iterative classifier optimization mechanism.

5.2 Iterative Classifier Optimization

Algorithm 2: Iterative Classifier Optimization

Input : Initial classifier f0, iteration number T
Output: The best classifier f∗

1 t = 0;
2 while t ≤ T do
3 Allocate resources based on classifier f t using the

dual algorithm;
4 Construct a new training data by sampling the

points with allocated resource;

5 Train an updated classifier f t+1 based on the new
training data;

6 t = t+ 1;

7 end

8 Choose f∗ from [f0, f1, f2, ..., fT ], based on
performance evaluation.

We propose an iterative algorithm to improve the classi-
fier by taking into account the new samples after resource
allocation. As shown in Algorithm 2, we adjust the classifier
by utilizing the points after resource allocation. There are
different ways of utilizing the historical data, with different
emphases on the original data and the data after resource
allocation. Specifically, the sampling method in Line 4 de-
fines a sampling rate p(τ, rflag) for each historical instance.

p(τ, rflag) is a function of two parameters: the iteration in-
dex τ and the instance type flag rflag (rflag = 1 for an
instance with allocated resource, rflag = 0 for others). In-
tuitively, p(τ, rflag) should give more emphasis on the most
recent instances and instances with allocated resource. In
the following, we list four sampling heuristics to achieve this
goal to different degrees:

(1) Sample all the historical data, i.e, p(τ, rflag) = 1 for
any τ and any rflag;

(2) Sample data only from the last iteration, i.e, p(t −
1, rflag) = 1 for any rflag;

(3) Sample all historical data with allocated resource (moved
data) only, i.e, p(τ, 1) = 1 for any τ ;

(4) Sample all historical data with allocated resource (moved
data) and the last iteration, i.e, p(τ, rflag) = 1, if
τ = t− 1 or rflag = 1.

In (1), the data from all past iterations are used as training
data; In (2), only the data in the last iteration are considered
as training data; Both (3) and (4) contain all historically
moved data, and they differ in whether the non-moved data
in the last iteration are included or not. The obtained T + 1
classifiers may not get improved every single iteration based
on evaluation, and there could be oscillations. However, the
algorithm keeps tracing the performance of classifiers for all
iterations and chooses the best from the T + 1 candidates.
Depending on different applications and different distribu-
tions of the data, some sampling methods may outperform
the others, as shown in Sec. 6.1.

Note that instead of fixing the iteration number T , we
can also use some other criteria as the stop condition. For
example, stop searching when the performance is no longer
increasing for the last T iterations.

6. EXPERIMENTS AND RESULTS
In this section, we test the performances of the designed

algorithms based on datasets with ground truth. Experi-
ments in our work are different from traditional machine
learning experiments, where training data are used to learn
a model and test data are used to evaluate the performance.
This is because in this framework, we need to get the labels
for the instances with allocated resource, and these instances
probably are not contained by the original training or test
data.1 Therefore, we need ground truth to label new in-
stances.

Using the experiments, we hope to answer two questions:
1) Based on the initial classifier, how efficient is the resource
optimization? 2) Based on the ground truth, how efficient
is the classifier optimization?

6.1 Synthetic Data
In this part, we consider 2000 points distributed evenly in

a two-dimensional square [−20, 20]× [−20, 20]. There are 12
cases with ground truth shown in Table 1. In experiments
1–6, we assume the ground truth is deterministic, i.e., given
a location [x1, x2], its probability to be positive is either 0
or 1. In experiments 7–12, the ground truth is probabilistic.

1Even though they are contained in the original dataset,
labeling new instances based on the past data may not reflect
the ground truth.



Table 1: Ground truth in experiments.
Exp No. G(x)

E1 G(x) = 1 if x1 < 0 and x2 < 0
E2 G(x) = 1 if x1 < 0 or x2 < 0
E3 G(x) = 1 if ‖[x1 − 20, x2 − 20]‖ > 30
E4 G(x) = 1 if (x1 + x2) < 2 cos(x1 − x2)
E5 G(x) = 1 if ‖[x1 − 20, x2 − 20]‖ > 30 and ‖[(x1 − 20, x2 − 20]‖ > 30
E6 G(x) = 1 if 1) x1 < −10, or 2) x1 ≥ −20 and x2 < 0, or 3) x1 ≥ 0 and x2 < −5

E7 G(x) = 1/(1 + exp((x1 + x2/2)/2))

E8 G(x) = 1/(1 + exp(−‖[x1 − 20, x2 − 20]‖2/100 + 9))
E9 G(x) = 1/(1 + exp(2(x1 + x2 − cos((x1 − x2)/5))))

E10 G(x) = 1/(1 + exp((x3
1 + x3

2)/1000))

E11 G(x) = 1/(1 + exp(‖[x1 + 20, x2 + 20]‖2/100 − 9))
E12 G(x) = 1/(1 + exp(max(x1, x2)))
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Figure 3: Positives and negatives in synthetic datasets.

We also illustrate the distributions of positives and negatives
in Fig. 3.

We assume there are two types of resources that can be
utilized to change feature values (and thus their locations in
the 2D space). We assume

g(xi, ri) = xi + ri, (23)

i.e., one unit of resource 1 and 2 increases feature 1 (x-axis)
and 2 (y-axis) by one unit, respectively. The trained neural
network classifiers have 5 neurons in the hidden layer.

The resource allocation results are given in Table 2. For
each experiment, we check three different combinations of
resources, as shown by columns “R1” and “R2”. Columns
“Dual(C)”, “Goal (C)” and “Baseline (C)” show the reduced
positives of the resource allocation algorithms as well as the
baseline according to the initially learned classifier. Since
the classifier is not the ground truth, the results can be over-
optimistic or under-optimistic. Columns “Dual(G)”, “Goal
(G)” and “Baseline (G)” show the reduced positives of the
resource allocation algorithms as well as the baseline accord-
ing to the ground truth. The last four columns “S1”, “S2”,
“S3” and “S4” give the results of the dual algorithm based
on the optimized classifiers using the four sampling meth-
ods presented in Sec. 5.2. The one that achieves the best
performance is made bold.

Comparing columns “Dual(C)”, “Goal (C)” and “Baseline
(C)”, we can see the dual algorithm outperforms the base-
line by almost one order of magnitude, especially when the
available resources are scarce (100, 100). In certain cases,

the Goal algorithm can have a similar performance with the
dual algorithm. However, there are also cases where the du-
al algorithm outperforms the Goal algorithm by more than
20%. Note that these three columns are based on the initial
classifier, which is not the ground truth. Therefore, the re-
sults only show the efficiency of the optimization algorithm.

Columns “Dual(G)”, “Goal (G)” and “Baseline (G)” are
based on ground truth. The dual algorithm also outper-
forms the baseline by almost one order of magnitude. In
a few experiments, the dual algorithm is outperformed by
the Goal algorithm. This is due to the mismatch between
the initial classifier and the ground truth. When the initial
classifier is biased, optimization based on it could lead to
poor performance. As shown by “E6.1”, the dual algorithm
according to the initial classifier reduces 58.88 positives, but
actually only reduces 10 positives with respect to the ground
truth.

Comparing column “Dual(G)” with columns “S1”, “S2”,
“S3” and “S4”, we can see the benefits of classifier optimiza-
tion. In “E4.1”, “E4.2”, “E6.1” and “E9.2”, the optimized
classifier reduces at least 2x positives compared with the ini-
tial classifier. In “E3.1”, “E4.3”, “E6.2”, “E8.1”, “E9.3” and
“E10.1”, more than 50% gain is achieved by the optimized
classifier. Among the four sampling methods, “S1” gener-
ally performs well, although occasionally achieves slightly
smaller gain compared to the best of the four.

When the boundaries between positives v.s. negatives are
non-linear and complex, it is difficult for the initial classi-
fier to represent the boundaries well. Thus, the evaluated



Table 2: Reduced positives in experiments.
Exp No. R1 R2 Dual(C) Goal (C) Baseline (C) Dual(G) Goal (G) Baseline (G) S1 S2 S3 S4
E1.1 100 100 82.88 79.16 6.01 92 89 6 118 101 116 117
E1.2 500 500 279.44 277.91 49.46 283 281 49 285 274 282 284
E1.3 1000 1000 376.52 370.95 101.05 386 390 110 405 386 403 406
E2.1 100 100 118.86 121.45 1.65 121 124 4 126 112 124 123
E2.2 500 500 281.99 281.52 13.38 289 289 15 306 304 306 305
E2.3 1000 1000 330.57 306.89 23.74 376 346 24 432 425 433 436
E3.1 100 100 73.47 66.89 3.16 67 63 6 117 94 113 112
E3.2 500 500 239.07 217.7 23.2 243 199 27 304 230 298 278
E3.3 1000 1000 381.03 343.92 63.39 375 311 52 432 336 432 425
E4.1 100 100 16.69 13.85 4.32 31 25 7 131 95 111 106
E4.2 500 500 90.73 64.64 20.51 133 84 28 353 299 340 353
E4.3 1000 1000 163.69 139.32 41.1 276 167 42 520 425 499 518
E5.1 100 100 54.5 49.48 2.03 69 55 4 93 80 73 96
E5.2 500 500 173.62 171.01 6.01 202 201 4 251 204 243 245
E5.3 1000 1000 307.75 300.92 21.81 249 236 11 364 292 339 344
E6.1 100 100 58.88 57.48 2.33 10 8 1 102 81 82 93
E6.2 500 500 184 147.23 35.55 212 191 45 306 249 241 279
E6.3 1000 1000 328.42 275.79 95.05 338 295 103 427 340 414 415
E7.1 100 100 34.24 28.96 3.78 16.89 17.34 4.31 17.15 17.91 17.43 17.61
E7.2 500 500 145.55 126.31 22.68 67.42 75.94 19.8 83.24 83.26 80.81 80.13
E7.3 1000 1000 165.67 146.57 43.91 141.1 150.62 44.84 154.12 155.89 153.82 154.05
E8.1 100 100 48.4 38.07 3.46 16.9 14.26 3.98 26.35 24.81 24.17 25.72
E8.2 500 500 119.23 101.05 20.47 113.18 94.3 19.88 119.3 113.38 113.75 117.68
E8.3 1000 1000 233.92 201.29 47.35 207.42 172.09 46.59 211.83 210.94 207.35 212.69
E9.1 100 100 10.86 8.45 3.52 20.22 14.1 4.28 24.52 23.77 22.77 23.53
E9.2 500 500 119.38 83.68 17.18 10.99 6.34 19.85 117.23 103.13 107.42 110.76
E9.3 1000 1000 129.01 100.06 46.17 126.82 90.44 41.07 211.46 191.22 195 205.48
E10.1 100 100 22.24 16.81 4.5 19.16 11.66 3.65 31.33 29.08 24.31 28.52
E10.2 500 500 90.19 88.37 21.06 79.67 72.38 27.71 112.36 103.24 107.89 104.3
E10 1000 1000 111.45 93.72 46.7 128.77 109.79 62.68 188.94 159.6 178.62 176.77
E11.1 100 100 32.78 30.37 4.05 25.33 24.2 3.64 26.33 25.92 25.47 26.24
E11.2 500 500 135.55 123.34 23.87 108.17 103.11 20 118.89 113.12 114.14 116.71
E11.3 1000 1000 227.41 201.03 49.21 173.87 149.37 39.03 212.14 209.52 212.22 208.8
E12.1 100 100 52.14 46.56 5.05 39.3 38.58 4.47 43.21 42.85 43.48 43.04
E12.2 500 500 164.79 152.28 31.81 146.56 141.85 25.24 169.63 164.4 167.75 167.91
E12.3 1000 1000 280.08 249.63 62.74 205.03 188.39 51.81 272.84 265.38 270.2 279.11
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Figure 4: Statistics about video dataset.

performance according to the initial classifier could be very
different from the evaluated performance according to the
ground truth, e.g, “E4”, “E5”, “E6” and “E9”. In this case,
the gain of classifier optimization is usually larger.

6.2 Real-World Dataset
From properly conducted controlled experiments, we can

study the causal relation between features and correspond-
ing labels. In the following, we introduce two datasets col-
lected from controlled experiments. Both datasets are avail-
able online. We first construct ground truth using statisti-
cal analysis on the collected data. Then the ground truth
is used to label new instances. We know in a real system,
the ground truth is typically not available. However, this
method enables us to evaluate the proposed mechanisms.

6.2.1 Video MOS Dataset
The first dataset comes from experiments conducted in

[13]. The goal of this experiment is to study the effect of
network features on user experience for video services. The
dataset contains 8 original videos and 8×5 streamed videos.
The streamed videos are the original videos transmitted over
a limited network bandwidth. Each video is viewed and
subjectively scored by 30 viewers. Therefore the dataset in-
cludes 240 views of the original videos and 1200 views of
the streamed videos. Each view is associated with a MOS
(Mean Opinion Score) given by the subject. MOS, a score
from 1 to 5, is a subject measurement of user experience in
many applications. For each view, it has two features: the
bandwidth used to transmit the video (x1) and the viewer’s
preference (x2). The bandwidth has 5 discrete values: 0.5,
1, 2, 3 and 5 Mb/s. A viewer’s preference is the score the
viewer gives to the original video. The preferences are re-
lated to the video contents and video quality but not any
network features. In the dataset, all preferences are larger
than 1, and the histogram is shown in Fig. 4(a). With a lin-
ear regression, we have the following estimation of the pdf
of user preferences,

p(x2) = −0.2021 + 0.1292x2, for 2 ≤ x2 ≤ 5. (24)

We assume that when MOS ≤ 3, the viewer is unsatisfied
with the viewed video and thus a positive instance. Other-
wise, the viewer is satisfied and thus a negative instance. In
Fig. 4(b), we show the effect of bandwidth and user prefer-
ence on positive ratios. When the bandwidth is less than 2.5
Mbps, the users are unsatisfied with probability 1. When the
bandwidth is greater than 2.5 Mbps, whether a user is satis-
fied or not depends on the user preference, and the relation
is almost linear. Therefore, the ground truth we generate
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from the dataset as

G(x) = max (1(x1 < 2.5), 1.5036− 0.2853x2) , (25)

where 1(·) is the indicator function.
We consider 2000 users in the system, with each user

watching one video. The user preference is generated ac-
cording to the distribution given by Eq. (24), and the band-
width received is assumed to be Gaussian distributed with
mean 2.5 Mbps and standard deviation 0.5 Mbps. The clas-
sifier we consider is a neural network with 5 neurons in the
hidden layer.

The resource allocated is (additional) bandwidth, and one
unit of bandwidth increases the value of feature 1 by one
unit. Resource allocation results are shown in Fig. 5. We
compare the dual algorithm with the baseline, under the ini-
tial classifier (“C”) and ground truth (“G”), as well as with
the best classifier from the four sampling methods. Each
sampling method outputs an optimized classifier, and the
best among the four is chosen. In Fig. 5, we change the
available bandwidth from 50 to 1600 Mbps. Blue curves
show the performance of the baseline according to the ini-
tial classifier (w/ 4) and the ground truth (w/ ∗). Red
curves show the performance of the dual algorithm accord-
ing to the initial classifier (w/ ◦)and the ground truth (w/
�). The dual algorithm achieves at least 2x performance
gain compared with the baseline when the available band-
width resource is less than 400 Mbps. When the resource
allocation is based on the optimized classifier (green curve,
w/ O), the reduced number of positives is further improved
by 50%. When the resource is over 800 Mbps, the gap be-
tween the actual performance (based on the ground truth)
and the predicted performance (based on the initial classi-
fier) becomes much larger. This demonstrates the necessity
of classifier optimization.

6.2.2 Web Browsing Dataset
In dataset [15], the authors conducted controlled experi-

ments to study the relation between bandwidth and user ex-
perience for web browsing. The dataset contains 572 MOS
values for users who surfed four types of web sites. After
removing the instances with insufficient data, we have 418
valid instances. We assume when the MOS ≤ 3, the user is
unsatisfied, i.e., a positive instance.

From the dataset, we find that the positive ratio goes down
linearly with the logarithm of bandwidth, as shown in Fig. 6.

Therefore we assume the ground truth in this dataset is

G(x) = min (max(1.6058− 0.2286x, 0), 1) ; (26)

We generate 10,000 users whose bandwidth is Gaussian
distributed with mean 512 kbps and standard deviation 128
kbps. The neural network classifiers we considered have two
neurons in the hidden layer.

Additional bandwidth is the available resource we can al-
locate to users, and one unit of bandwidth increases the
feature by one unit. Resource allocation results are shown
in Fig. 7. When the available resource is larger than 10,000
kbps, the gain increases exponentially. The reason is that
the positive probability is relatively low in this dataset, and
the learned classifier can only pick up a few positives with
high true positive rate. Since the baseline only allocates
bandwidth to predicted positives, which are a small por-
tion of real positives, the reduced positives stop increasing
when the resource is sufficient. The dual algorithm takes
the learned classifier as the objective function for resource
optimization, and therefore it does not suffer from this is-
sue. It is also shown by the figure that the initial classifier
is over-optimistic compared with the ground truth. In this
dataset, the gain of the optimized classifier over the initial
classifier is limited.

7. DISCUSSIONS
The proposed algorithms can handle cases with a large

number of features. However, if there are many types of
resources to allocate, it will be expensive to use exhaus-
tive search to find individual optimum. Therefore, our al-
gorithms are suitable to the scenarios where the number of
resource types is small, which is usually the case in computer
networks.

Most existing resource allocation mechanisms rely on do-
main knowledge to decide resource allocation. The proposed
framework provides an alternative way of resource alloca-
tion, and can be used to augment existing mechanisms. If
user experience is the ultimate goal, collecting user experi-
ence data is a necessary step. Sometimes, user experience
data comes naturally (e.g., user call complains [3]), and oth-
er times, one needs to collect user experience data (e.g.,
video MOS scores). Once such data collection exists, one is
able to build a model offline and adjust the model period-
ically. The classifier optimization algorithm needs to train
multiple classifiers iteratively based on the feedback of re-
source allocation. In computer networks, the feedback of re-



source allocation may often be obtained quickly. Therefore,
the classifier optimization could obtain a good classifier in a
relatively short amount of time, which makes the closed-loop
framework practical.

When adjusting the classifier, we only use heuristic algo-
rithms to sample the historical data, including the original
data and the data with allocated resource. However, there
is still a lack of knowledge about the areas that are neither
covered by original data set nor the targeted data set. This
lack of information may make the learned classifier inaccu-
rate and result in suboptimal resource allocation. Therefore,
from a long term perspective, we may need to temporally
apply a suboptimal resource allocation scheme to explore
those areas. This will require an appropriate exploration-
exploitation tradeoff and will be investigated in the future.

There is a tradeoff between maximizing efficiency and
guaranteeing fairness. As our algorithms tend to focus on
the users whose experience can be improved with the least
amount of resources, the fairness among users could deteri-
orate. In the future, we will consider the balance between
efficiency and fairness.

8. CONCLUSIONS
In this paper, we propose a closed loop approach to the

data-driven resource allocation problem where the objective
is to minimize the number of positives based on neural net-
works. We consider a novel framework, where the classifier
learned by machine learning is utilized as the objective func-
tion in resource allocation, and the classifier is further opti-
mized based on post-allocation evaluation and feedback. We
design a dual algorithm to coordinate the resource allocation
among users, and a classifier optimization algorithm to find
the most proper neural network classifier. Experiments us-
ing synthetic data and real data from computer networks
show our algorithms can reduce the expected number of un-
satisfied users by up to 2x compared with the baseline, while
the classifier optimization further improves the performance
by 50%.
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