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ABSTRACT
The demand for seamless Internet access under extreme user

mobility, such as on high-speed trains and vehicles, has be-

come a norm rather than an exception. However, the 4G/5G

mobile network is not always reliable to meet this demand,

with non-negligible failures during the handover between

base stations. A fundamental challenge is to balance the ex-
ploration of more measurements for satisfactory handover,

and exploitation for timely handover before the fast-moving

user leaves the serving base station’s coverage.

We ask a simple question: Can the mobile network automat-
ically learn a reliable handover policy for its users in extreme
mobility? Our preliminary study yields a positive sign. We

formulate the exploration-exploitation trade-off in extreme

mobility as a composition of two online learning problems.

Then we showcase how multi-armed bandits help solve both

problems with a provable O(log 𝐽 log𝑇 ) regret. Our theoret-
ical analysis and tests over a real LTE dataset from Chinese

high-speed rails confirm the potential of online learning for

reliable extreme mobility.

1 INTRODUCTION
The wide adoption of high-speed rail has made extreme user

mobility increasingly common. Today, high-speed trains can

move up to 350 km/hr with passengers who require always-

on Internet access. A common solution is to use cellular

networks, such as 4G LTE and 5G. But while the existing

4G/5G network can successfully support billions of station-

ary or low-mobility users, it struggles to maintain the same

reliable service for users with extreme mobility. It has been

reported that [? ? ], the high speed causes more failures:

empirical studies of 4G LTE from high-speed rail shows the

handover failure ratio can range from 5.5% to 12.6%, which is

about 2× higher than low-mobility scenarios such as walking

and driving.

There are various causes of the failures in extreme user

mobility, such as weak coverage, dramatic wireless dynamics,

signaling loss, sluggish channel feedback, to name a few [?
]. To address them, a unique and fundamental challenge

for the radio base station (cell) is to tackle the exploration-
exploitation trade-off. To decide the next target cell a client
should migrate to, the serving cell should ask the client to

measure the candidate cells’ radio quality (Figure 1). With

extreme mobility, the serving cell has to balance the need

to take more measurements of available cells (exploration)

for satisfactory decision, and the demand to make a timely,

successful handover (exploitation) before the fast-moving

user leaves its coverage (thus losing network service). This is

a difficult trade-off that depends on various dynamic factors,

such as the user movement speed, base station’s runtime

operation modes, and the external environment change. A

static or manually-crafted handover policy today fall short

in adapting the trade-off to these dynamic factors.

To this end, this work takes the first step to explore if

online machine learning can help automate the exploration-

exploitation trade-off in extreme mobility. We analyze this

trade-off in 4G/5G and formulate it as a composition of two

distinct problems (§3). For each mobile user, the serving cell

should first identify an optimal serving cell threshold value

to trigger the handover and measurement procedure. Then,

the serving cell should next determine when and in what

sequence to take a measurement, and when to execute a

handover. This problem decomposition is compatible with

the readily-available mechanisms in 4G/5G, thus facilitating

the implementations in practice.

We next explore the solution directions to both problems

using online learning. While the ultimate solutions are still

under investigation, our early attempts have yielded positive

results. Specifically, we showcase a policy called BaTT (Ban-

dit and Threshold Tuning) based on multi-armed bandits (§4).
To determine when to start the measurements, we formulate

it as a 𝐽 -armed stochastic bandit problem over 𝑇 rounds,

and solve it with 𝜖-Binary-Search-First with O(log 𝐽 log𝑇 )
regret. Then, to optimize the handover reliability, BaTT de-
cides what sequence of target cells to measure. This can be

formulated as an opportunistic bandit with side observa-

tions. We introduce the opportunistic Thompson sampling

algorithm to solve this problem with O(log𝑇 ) regret. BaTT
has exhibited viable benefits. Our experiments in §6 with

a large-scale LTE dataset on the Chinese high-speed trains

show BaTT reduces 29.1% handover failures compared to the

state-of-the-art 4G/5G handover policies and lower regret

than traditional UCB and Thompson sampling. We discuss

the remaining open issues and the next steps in §8.

2 PRELIMINARIES
The 4G LTE and 5G are the largest wireless infrastructure

that, together with wired Internet, enable ubiquitous Internet

access and wide-area mobility management for users. 4G/5G

deploys base stations (“cells”) in different geographical areas.
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Figure 1: Mobility management in 4G/5G today.

Table 1: Handover failures in extreme mobility

User speed (km/h) 200 300 350

Total handover failures 5.5% (100%) 12.1% (100%) 12.6% (100%)

• Due to serving cell 4.9% (90.0%) 9.3% (77.1%) 11.0% (87.3%)

• Due to target cell 0.6% (10.0%) 2.8% (22.9%) 1.6% (12.7%)

When a user leaves one cell’s radio coverage, it migrates to

another cell (a handover) to retain its network service.

Figure 1 shows the standard 4G/5G handover procedure [?
? ]. When a mobile user connects to a serving cell, it receives

a list of neighboring cells. The user can then measure these

neighboring cells’ signal strengths one by one. If any neigh-

boring cell satisfies the standard triggering criteria (e.g., a

neighboring cell’s signal strength is offset better than the

serving cell’s [? ? ]), the user will report this cell’s and serv-

ing cell’s signal strengths to the serving cell. The serving

cell will then run its local policy to decide if more neigh-

boring cells should be measured, whether handover should

begin, and which target cell the user should hand over to.

If the serving cell chooses to take new measurements, it

will provide the user with a new neighboring cell list. If it

chooses to handover, the serving cell will (in coordination

with the target cell) send the handover command with the

target cell’s identifier to the user. The user will disconnect

from the serving cell and connect to the target cell.

3 PROBLEM AND FORMULATION
3.1 Is 4G/5G Reliable in Extreme Mobility?
The current 4G/5G handover design is primarily meant for

static and low-mobility scenarios. Recent studies [? ? ] have
shown that fast-moving users experience non-negligible han-

dover failures, thus frequently losing Internet access. Table 1

shows the 4G LTE handover failure ratios of a smartphone

on a Chinese high-speed train from Beijing to Shanghai

based on the dataset from [? ] (elaborated in §6). On average,

5.5%, 12.1% and 12.6% handovers fail at the train speed of

200km/h, 300km/h and 350km/h, respectively. The failure

ratio becomes higher with faster train speed.

By analyzing the LTE signaling messages of these failures,

we find that 77.1%–90.0% of these failures are caused by the

late handover, i.e., by the user not receiving the handover

command from the serving cell by the time it leaves the serv-

ing cell’s radio coverage. The remaining handover failures

occur when the user receives the handover command from

the serving cell, but fails to connect to the new target cell.

In this case, the selected target cell is unreliable.

3.2 New Challenge:
Exploration-Exploitation Trade-off

Frequent handover failures occur in extreme mobility be-

cause the serving cell faces a fundamental dilemma between

exploration (more measurements for satisfactory target cell

selection) and exploitation (fast measurements for timely

handover). In 4G/5G, the serving cell relies on the user to

measure and report the cells’ signal strengths for the han-

dover decision. To retain Internet access, the user must de-

liver these measurements before it leaves the serving cell’s
radio coverage. But finding a reliable target cell may require

scanning and measuring all available cells, in principle. Per

Figure 2a, on average, a mobile user on a Chinese high-speed

train should measure 16 different neighboring cells before

making a handover decision. Note that the user has to mea-

sure these cells sequentially. But, if the user is moving very

fast, it may not be able to deliver all its measurements and
trigger a handover before leaving its serving cell’s radio cov-

erage (resulting in a late handover failure). Reducing the

number of cells to measure can mitigate late handovers. But

this risksmissing better target cells and therefore committing

a handover to an unreliable target cell (thus failures).

3.3 Problem Formulation
As discussed in §3.2, a fast-moving user has a short but

critical time window to conduct effective measurements for

handover. It needs to use this period effectively by measuring

the right sequence of target cells before leaving the serving

cell’s coverage. For reliable handover, we must answer two

questions: 1) When does this critical moment start? 2) what

is the right sequence of target cells to measure?

To answer both questions, we formulate the reliable han-

dover problem as follows. Consider a serving cell with 𝐾

neighbor cells. Given a set of mobile users 𝑡 = 1, . . . ,𝑇 , our

goal is to minimize the handover failure ratio over all𝑇 users.

When should the measurements for handover begin?
As a user is moving away from the serving cell, its signal

strength weakens. So roughly speaking, the user’s critical

time starts when the user-perceived signal strength of the

serving cell is at a certain threshold. In 4G/5G, this threshold

has been standardized (A2 in [? ? ]) and configurable for

each cell by operators. Manually tuning this threshold is a

challenging task. On one hand, this threshold should be high

enough so that 1) handover failure will not often occur due

to weak serving cell; and 2) the user has sufficient time to
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Figure 2: Characteristics of LTE handovers over Chinese high-speed train.

measure neighboring cells to obtain a good target cell for

handover. On the other hand, this threshold should also be

low enough 1) to avoid the “ping-pong” loops where a user

oscillates between two cells due to signal fluctuations (which

incurs a lot of signaling overhead and more failures), and 2)

to avoid a false start when a desirable target cell is still too

far away to be measured appropriately.

To automatically learn this threshold, we formulate this

“when" question as a closest sufficient threshold identification
problem. Given a serving cell, let {𝑍 𝑗 } = 𝑍1, 𝑍2, . . . 𝑍 𝑗 , . . . ,

𝑍 𝐽 −1, 𝑍 𝐽 be the sequence of 𝐽 serving cell signal strength ob-

served by a mobile user. Let [𝐽 ] denote the list {1, 2, . . . , 𝐽 }.
Note we only consider discrete signal strengths which are

standardized in 4G/5G [? ? ]. Let the random variable 𝑓 (𝑍 𝑗 )
represent handover failure due to the serving cell’s signal

strength 𝑍 𝑗 . Note 𝑓 (𝑍 𝑗 ) ∈ {0, 1}, where 0 indicates handover
failure and 1 indicates a success. The probability of a han-

dover failure due to signal strength 𝑍 𝑗 is 𝑟 𝑗 = P[𝑓 (𝑍 𝑗 ) = 0].
Let 𝑅 be the given serving cell handover failure tolerance

level. We assume that as the serving cell’s signal strength 𝑍 𝑗
increases, the handover failure probability 𝑟 𝑗 monotonically

decreases. This is coherent with the physical laws and em-

pirical results from the high-speed rail dataset in Fig. 2b. Our

goal is to find a threshold 𝑀 ∈ {𝑍 𝑗 } that is the smallest 𝑍 𝑗
such that 𝑟 𝑗 ≤ 𝑅. That is,𝑀 is the lowest signal strength at

which the probability of handover failure is no larger than 𝑅.

What sequence of target cells to measure? Given the

threshold 𝑀 , once a mobile user starts the measurement,

the key issue is to decide the sequence of the target cells to

measure and the time to stop measurement for handover.

Consider a mobile user 𝑡 . Once the measurement proce-

dure is triggered, the serving cell starts a sequence of mea-

surements of neighboring cell’s signal strengths, indexed by

𝑛. The decision of whether to take more measurements or to

execute a handover is the central exploitation-exploration

dilemma faced by the serving cell. Note that the total num-

ber of measurements may vary from user to user (depending

on their movement speed). Further, once the handover is

decided, the serving cell will terminate measurement.

At the 𝑛th measurement, let 𝐼𝑡,𝑛 be the index of the target

cell to measure. In 4G/5G, the user can observe the serving

cell signal strength 𝑌𝑡,𝑛 and the target cell signal strength

𝑋𝐼𝑡,𝑛 . Let 𝑋𝑏𝑒𝑠𝑡 be the strongest target cell observed thus far.

After 𝑛 measurements, if the handover is decided, the user

will migrate to the best target cell with signal strength 𝑋𝑏𝑒𝑠𝑡 .

Recall that 𝑓 (𝑌𝑡,𝑛) ∈ {0, 1} is the handover failure caused
by serving cell signal strength 𝑌𝑡,𝑛 . Similarly, we can de-

fine 𝑔(𝑋 ) as the handover failure caused by the target cell

with signal strength 𝑋 , where 𝑔(·) and 𝑓 (·) may be dis-

tinct functions. The handover failure probability of user 𝑡 is

E[𝑓 (𝑌𝑡,𝑛)𝑔(𝑋𝑏𝑒𝑠𝑡 )] when the handover happens after 𝑛 mea-

surements and 𝑋𝑏𝑒𝑠𝑡 is the best target cell. In general, 𝑌𝑡,𝑛
decreases with 𝑛 as the mobile user is moving away from

the serving cell. Therefore, the tradeoff is whether to make

more measurements, which improves 𝑋𝑏𝑒𝑠𝑡 , but at the risk

of decreasing 𝑌𝑡,𝑛 . The typical practice today is to measure

target cells following a fixed sequence and trigger actual

handover when 𝑋𝑏𝑒𝑠𝑡 is greater than or equal to 𝑌𝑡,𝑛 plus an

offset quantity determined by the network provider [? ? ].
The objective of the “what sequence" question is to decide

the best order of target cell measurement and when to stop

measurement for handover.

4 A SHOWCASE POLICY: BATT
We showcase the potentials of using online learning to solve

both problems above for reliable extrememobility. Our exam-

ple design, BaTT, explores the multi-armed bandit algorithms.

We choose bandit algorithms as our first candidate solution

for three reasons: (1) They are lightweight and thus respon-

sive for fast-moving users; (2) They can provably guarantee

reliability (i.e., minimization of the regret of handovers in

§5); (3) They are highly adaptive to environmental dynamics,

changes of the network configurations, and user movement

variations. We are also exploring other online learning algo-

rithms that can achieve these goals and outperform BaTT.

4.1 When: 𝜖-Binary-Search-First
Recall that our objective is to find the handover threshold

𝑀 , i.e., the lowest signal strength at which the probability

of serving cell handover failure is no larger than 𝑅. Clearly,

exploring each value of the 𝐽 signal strengths is expensive.

Instead, we should leverage the monotonicity property be-

tween the signal strength and handover failure rate.
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Figure 3: Workflow of BaTT in extreme mobility.
Algorithm 1 𝜖-Binary-Search-First
Input: 𝐽 ,𝑇 , R, 0 ≤ 𝜖 ≤ 1

1: Explore: Binary-Arm-Search(𝐽 , ⌊ 𝜖𝑇
log 𝐽
⌋,1,𝐽 ,R)

2: Select arm 𝑗 such that 𝑟 𝑗 ≥ 𝑅 and 𝑗 ∈ argmin𝑖∈[𝐽 ] |𝑟𝑖 − 𝑅 |
3: for remaining rounds 𝑛 ≤ 𝑇 do
4: Play arm 𝑗

5: end for

Binary-Arm-Search(𝐽 , 𝑃 , 𝑅, Start, End)

6: if End ≥ Start then
7: Play arm 𝑗 = ⌈𝑆𝑡𝑎𝑟𝑡 + 𝐸𝑛𝑑−𝑆𝑡𝑎𝑟𝑡

2
⌉ for a total of 𝑃 times. Denote the em-

pirical mean reward 𝑟 𝑗 .

8: if 𝑟 𝑗 ≥ 𝑅 then
9: Return Binary-Arm-Search(𝐽 , 𝑃 , Start, 𝑗 − 1, 𝑅)
10: else
11: Return Binary-Arm-Search(𝐽 , 𝑃 , 𝑗 + 1, End, 𝑅)
12: end if
13: end if

To this end, we propose the 𝜖-Binary-Search-First based on

multi-armed bandit algorithms. We provide an exploration

parameter 0 ≤ 𝜖 ≤ 1. Each arm 𝑗 ∈ [𝐽 ] is associated with a

random variable 𝑓 (𝑍 𝑗 ) where E[𝑓 (𝑍1)] ≤ E[𝑓 (𝑍2)] ≤ · · · ≤
E[𝑓 (𝑍 𝐽 )] . The goal is to identify the optimal threshold:

𝑀 = argmin

𝑍 𝑗

{
E[𝑓 (𝑍 𝑗 )] ≥ 𝑅

}
(1)

Alg. 1 shows how 𝜖-Binary-Search-First works. It has two

phases: exploration and exploitation. During the exploration

phase, Alg. 1 pulls the arms in a binary search manner as

shown in the Binary-Arm-Search subroutine. Exploration

lasts no more than 𝜖𝑇 rounds, where 𝜖 is optimized as 𝜖 =
log 𝐽

𝑇
− log 𝐽

2𝑇𝛿2
log

(
log 𝐽

6𝛿2𝑇 𝐽

)
. During exploitation, Alg. 1 identifies

the estimated best arm among those searched and pulls it for

the remainder of the game. We choose an exploration-first

policy here for easy illustration. Of course, UCB or Thompson

Sampling can also be used with the same asymptotic bound.

4.2 What Sequence: Opportunistic-TS
Consider a mobile user 𝑡 with a given threshold �̂� decided by

the 𝜖-Binary-Search-First algorithm. Once the handover mea-

surement is triggered by 𝑌𝑡,0 < �̂� , our goal is to determine

the optimal sequence of target cells to measure.

Algorithm 2 Opportunistic Thompson Sampling (TS)

Input: 𝑡, 𝐾, �̂� , current TS posterior

1: 𝑛 = 0, 𝑋𝑏𝑒𝑠𝑡 = 0, 𝑌𝑡,𝑛 = ∞, 𝐵 = ∅
2: if 𝑋𝑏𝑒𝑠𝑡 < �̂� then
3: if 𝑌𝑡,𝑛 > 𝑋𝑏𝑒𝑠𝑡 then
4: Measure target cell 𝐼𝑡,𝑛 using TS, where 𝐼𝑡,𝑛 ∉ 𝐵.

5: Receive (𝑋𝐼𝑡,𝑛 , 𝑌𝑡,𝑛 )

6: Update

7: else
8: Handover to 𝑋𝑏𝑒𝑠𝑡

9: end if
10: else if 𝑌𝑡,𝑛 ≥ �̂� + 𝑐 then % “free" observation

11: Measure target cell 𝐼𝑡,𝑛 using TS where 𝐼𝑡,𝑛 ∉ 𝐵.

12: Receive (𝑋𝐼𝑡,𝑛 , 𝑌𝑡,𝑛 )

13: Update

14: else
15: Handover to 𝑋𝑏𝑒𝑠𝑡

16: end if
17: def Update:
18: if 𝑋𝐼𝑡,𝑛 > 𝑋𝑏𝑒𝑠𝑡 then
19: 𝑋𝑏𝑒𝑠𝑡 ← 𝑋𝐼𝑡,𝑛

20: end if
21: 𝑛 ← 𝑛 + 1, 𝐵 = 𝐵 ∪ 𝐼𝑡,𝑛 . Update TS posterior distribution of arm 𝐼𝑡,𝑛

We propose an opportunistic Thompson sampling algo-

rithm motivated by a unique property observed in the real

traces. In particular, we observe that the change in signal

strength over consecutive measurement is bounded (as em-

pirically validated in Fig.2c with the high-speed rails dataset).

This allows us to make the following regularity assumption
regarding the serving cell signal strength 𝑌𝑡,𝑛 . We assume

that there exists some positive constant 𝑐 such that

|𝑌𝑡,𝑛 − 𝑌𝑡,𝑛+1 | < 𝑐.

This ensures that the serving cell signal strength does not

change “too quickly" between consecutive measurements.

Under this assumption, we can have “free” measurements

when the best target cell so far is good enough (𝑋𝑏𝑒𝑠𝑡 ≥ �̂�)

and the serving cell is still strong enough (𝑌𝑡,𝑛 ≥ 𝑀 + 𝑐). So
the next measurement is risk-free. Therefore, we can first

find the best target cell and then use the “free” observations

when available to satisfy the need for exploration at no cost.

The algorithm is outlined in Alg. 2. It takes as input the

number of available neighboring cells 𝐾 , the index of the

mobile user 𝑡 , and the handover threshold �̂� from 𝜖-Binary-

Search-First. If the best target cell 𝑋𝑏𝑒𝑠𝑡 is not satisfactory

(that is, 𝑋𝑏𝑒𝑠𝑡 < �̂�) then the algorithm compares the serving

cell to 𝑋𝑏𝑒𝑠𝑡 (Line 2). If 𝑌𝑡,𝑛 > 𝑋𝑏𝑒𝑠𝑡 , then the algorithm

continues to measure the best unmeasured target selected

using TS (Thompson Sampling). If 𝑌𝑡,𝑛 < 𝑋𝑏𝑒𝑠𝑡 , the mobile

user 𝑡 handovers to 𝑋𝑏𝑒𝑠𝑡 (line 7). Otherwise, as in line 9, if

𝑋𝑏𝑒𝑠𝑡 is satisfactory and 𝑌𝑡,𝑛 ≥ �̂� + 𝑐, then the algorithm

can make “free" measurements. In this case, the algorithm

explores by selecting an unmeasured target selected using TS.

We note that any bandit algorithms can be used in selecting

target cells (to measure), such as UCB, greedy, and round-

robin. In our experiments, we observe that TS achieves the

best and most robust performance and thus adopt it here.

5 REGRET ANALYSIS
We analyze the regrets of reliable handovers with BaTT.



5.1 𝜖-Binary-Search-First
To analyze Alg. 1, we first define its regret. Let 𝑁𝑇 ( 𝑗) be the
number of times a threshold setting 𝑗 is pulled under a given

policy Γ.We define the regret over 𝑇 rounds as

𝑅Γ (𝑇 ) = 𝑇 − E[𝑁𝑇 (𝑎∗)] =
∑
𝑎≠𝑎∗
E[𝑁𝑇 (𝑎)] .

We can now bound the regret accumulated by the 𝜖-Binary-

Search-First algorithm. Define Δ = 𝑟𝑀−𝑅,𝐷 = min𝑗 |𝑟𝑀−𝑟 𝑗 |,
and 𝑑 = min𝑗 |𝑟 𝑗 − 𝑅 |, and 𝛿 = min(Δ, 𝐷/2), where 𝑟𝑀 is the

probability associated with the signal strength𝑀 .

Theorem 5.1. Alg. 1 achieves regret bounded by

𝑅(𝑇 ) ≤ log 𝐽

(
log 6𝛿2𝑇 𝐽

2𝛿2
− log log 𝐽

2𝛿2
+ 1

2𝛿2
+ 1

)

when 𝑑 <

√
log(𝑇 log 𝐽 )

2𝑃
, where 𝑑 is the minimum absolute

distance between a searched arm and 𝑅, and 𝛿 = min(Δ, 𝐷/2).

The proof is available in [? ].

5.2 Opportunistic-TS
We note that the exact regret of the general “what sequence"

is difficult to evaluate, even if we use a classic bandit algo-

rithms such as TS and UCB. The reason is that 𝑌𝑡,𝑛 is an

unknown and non-stationary process over 𝑛. However, a

simpler case is where the mobile user is only allowed to

measure one target cell and then handover to it. In this case,

Opportunistic-TS reduces to the classic Thompson Sampling

and thus yields O(log𝑇 ) regret. We note the ability to select

amongmultiple target cells in general should yield better per-

formance than classic TS in practice. This is supported by our

empirical evaluation using real traces. We are in the progress

of extending this analysis to the general settings. Specifi-

cally, we hope to achieve O(1) regret as in [? ] because the
probability of having “free” observations is non-negligible.

6 EMPIRICAL VALIDATIONS
We assess the potentials of online learning for reliable ex-

treme mobility. The results here are based on BaTT, thus
representing a lower bound of handover failure reductions.
Dataset: We use a large-scale 4G LTE dataset on Chinese

high-speed trains from [? ]. This dataset was collected on the

high-speed rails between Beijing and Shanghai over 135,719

km of trips. In these tests, a smartphone using China Mobile

or China Telecom 4G LTE runs continuous iperf data transfer

on the high-speed train at 200–350 km/h. Meanwhile, the

smartphone runs MobileInsight [? ] to collect the 4G LTE

signaling messages from the hardware modem. These mes-

sages include 38,646 runtime measurement configurations

of neighboring cell lists and thresholds, 81,575 measurement

(a) Reliability with𝑀=-120 dBm (b) Regret with𝑀=-120 dBm
Figure 4: BaTT and other algorithms with 𝑐=4.

reports of serving/neighboring cell’s signal strengths, and

23,779 handover commands as exemplified in Figure 2.

Experimental setup: We first evaluate BaTTwith a given
threshold𝑀 . We then compare its regret and handover suc-

cess ratewith the following algorithms using the same thresh-

old: (1)Oracle: We assume that the average handover failure

rates of the target cells are known. Therefore, we measure

the target cells in an increasing order of the failure rate. (2)

Baseline: This is the state-of-the-art 4G/5G handover algo-

rithm [? ? ? ]. It compares the serving cell and target cell’s

signal strengths and selects the first neighboring cell with

𝑋𝑏𝑒𝑠𝑡 > 𝑌𝑡,𝑛 as the target cell. This policy does not specify the

ordering of cells to measure and relies on the device-specific

cell scanning implementations instead. So, we assume the

user’s device measures the target cells randomly. (3) UCB:
We assume that the serving cell maintains UCB estimates for

the target cells and instructs a mobile user to measure target

cells based these estimates. (4) TS: Similar to UCB, except us-

ing Thompson sampling. We note that the evaluation results

are driven by real traces and not limited by the assumptions

made for the analysis.

6.1 Preliminary Results
We consider a serving cell with 𝐾 = 10 neighboring cells

with the empirical signal strength distribution drawn from

the dataset. Then we draw each cell’s expected reward by

mapping their signal strength distribution to the handover

success rate based on 𝑓 (·) and 𝑔(·) from real traces in Fig-

ure 2b. This results in the reward (handover success rate)

vector [0.76, 0.88, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.97]. We

then replay all sequences of serving cell’s measurements be-

fore each handover command in the dataset. For each serving

cell’s measurement, we run each algorithm to decide the next

neighboring cell to measure. We generate this neighboring

cell’s measurements based on its empirical distribution of

signal strengths. With these measurements, each algorithm

decides if the measurement should continue and selects the

target cell if handover should start.

Comparison with state-of-the-art As shown in Fig-

ure 4a, compared to the baseline in 4G/5G today, BaTT im-

proves mean handover success rate from 89.7% to 92.7%. That

is, it prevents 29.1% handover failures in 4G/5G today. Fur-

ther, note that BaTT approximates the Oracle, which is the

optimal performance we can expect in reliable mobility to-

day. Compared to the baseline, BaTT optimizes the ordering



of the cells to measure when the serving cell’s quality is

decreasing, thus mitigating late handover failures.

Comparison with other bandit algorithms Figure 4a

and 4b show BaTT outperforms UCB and TS. This is because

BaTT adaptively balances the exploration and exploitation

based on the runtime serving cell quality, while UCB and

Thompson sampling do not. BaTT can accelerate the explo-

ration when the serving cell quality is good and mitigate late

handover failures when serving cell quality is not. This is cru-

cial, since late handovers due to the serving cells dominate

the handover failures in reality, as shown in Table 1.

7 RELATEDWORK
Mobility management has been actively studied in recent

years. Various deficiencies have been identified, such as sub-

optimal radio coverage [? ], network misconfiguration [?
], handover policy conflicts [? ], and late/blind handovers

[? ], to name a few. Our work studies a different aspect of

handover reliability in extreme mobility. In the context of

extreme mobility, [? ? ] report the non-negligible handover
failures in reality, and [? ] mitigates them by refining wire-

less communication to relax the exploration-exploitation

trade-off implicitly. In contrast, our work explicitly tackles
the exploration-exploitation trade-off using online learning

policies. There are some efforts to refine the performance

of handover policy with machine learning techniques like

fuzzy logic [? ], neural networks [? ], and SVM [? ]. Our work
differs from them because we focus on reliability.

8 DISCUSSION AND CONCLUSION
In this work, we strive for reliable 4G/5G handover in ex-

treme mobility using online learning techniques. We formu-

late and decompose the exploration-exploitation dilemma

in extreme mobility into two online learning problems. To

demonstrate the promise of online learning for reliable han-

dovers, we showcase a multi-armed bandit-based strategy to

search for the optimal threshold of signal strength to address

this dilemma and opportunistically balance the exploration

and exploitation of target cells based on the runtime serving

cell’s signal strength. Our analysis showsO(log 𝐽 log𝑇 ) over-
all regret of handover failures. Experiments with large-scale

operational LTE datasets from the Chinese high-speed trains

demonstrate the viability of handover failure reduction.

This work is still in its early stages and demonstrates

promising potentials. As a first attempt, many open issues re-

main. First, the current problem formulation mainly takes a

single base station’s perspective, i.e., minimize the handover

failures among all clients served by one base station. Alter-

natively, a client-side problem formulation is also possible,

i.e., minimize the handover failures of a single client during

its fast movement across multiple base stations. We plan

to explore if more insights and efficient solutions from this

perspective. Second, BaTT currently relies on certain assump-

tions, such as the time-invariant distribution of each cell’s

signal strengths and the monotonicity of handover failures

w.r.t. signal strengths. Relaxing these assumptions would

broaden BaTT’s applicability to operational mobile networks

in reality. Third, the current BaTT can further explore the

domain-specific knowledge of the 4G/5G handovers for fur-

ther potentials for failure reduction. It could also benefit

from recent advances of multi-armed bandit algorithms with

O(1) regret (e.g., opportunistic bandits [? ]). Fourth, beyond
multi-armed bandits, other online learning algorithms may

also be beneficial for reliable handovers. Last but not least,

our study so far relies on existing mechanisms in 4G/5G

today. We will explore if other online learning techniques

could be more beneficial with new mobility management

scheme designs in 5G and beyond.
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