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Abstract

Novelty detection using deep generative models such as au-
toencoder, generative adversarial networks mostly takes im-
age reconstruction error as novelty score function. However,
image data, high dimensional as it is, contains a lot of differ-
ent features other than class information which makes models
hard to detect novelty data. The problem gets harder in multi-
modal normality case. To address this challenge, we pro-
pose a new way of measuring novelty score in multi-modal
normality cases using orthogonalized latent space. Specifi-
cally, we employ orthogonal low-rank embedding in the la-
tent space to disentangle the features in the latent space us-
ing mutual class information. With the orthogonalized latent
space, novelty score is defined by the change of each latent
vector. Proposed algorithm was compared to state-of-the-art
novelty detection algorithms using GAN such as RaPP and
OCGAN, and experimental results show that ours outper-
forms those algorithms.

Introduction
Novelty detection, also called anomaly detection in broader
perspective, is regarded to be a task of recognising the test
data that differs in some respect from the data that are previ-
ously seen. Novelty detection has been actively researched
since the demand has been increasing due to its significance
and broad applications in security, AI safety, healthcare in-
dustry.
Deep learning has recently shown tremendous performances
in learning distribution and representations of various com-
plicated data such as high-dimensional data, time series
data. Deep learning for novelty detection aims to learn fea-
ture representations and output novelty scores through the
neural network to detect data, which has different feature
representations from the previously observed data. Many
deep learning algorithms for novelty detection has been pro-
posed recently, showing significantly better performances
than traditional novelty detection methods. Deep genera-
tive models such as autoencoder (AE), generative adversar-
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ial networks (GANs) and their variational models are recog-
nized as one of the biggest breakthrough in deep learning.
Since they show great performances in pattern recognition
in general, they are adopted for novelty detection in deep
learning framework frequently. Deep generative models-
based novelty detection algorithms such as OCGAN (Per-
era, Nallapati, and Xiang 2019), RaPP (Kim et al. 2019),
AnoGAN (Schlegl et al. 2017), (An and Cho 2015), and
(Sakurada and Yairi 2014) usually takes image reconstruc-
tion error or extension of it as a novelty score function. The
key in novelty detection is to differentiate whether the in-
put data is normal or novelty. However, as image data itself
has a lot of inherent traits, e.g. rotations and thickness of
the digit in images in MNIST dataset, image reconstruction
error can be magnified by those factors, which eventually
increases the wrong novelty detection cases potentially as
shown in Figure 1. This gets worse in multi-modal normality
case, which we aim to tackle. To the best of our knowledge,
there has not been any precedent deep generative approaches
to tackle novelty detection in multi-modal normality cases.
In this paper, we propose a new framework of novelty
score function using orthogonalized latent space. Detection
of novelty class in latent space has several benefits. Latent
space is lower dimensional space with the feature informa-
tion than the original high dimensional data, which is easier
to be handled. Furthermore, features in latent space can be
disentangled and highlight the class information to detect
novelty class well. Low dimensional trait of latent space en-
able us to handle the features in the data easier. In this regard,
we propose a novelty function using the change of angle in
latent vectors by embedding input data in latent space or-
thogonal to each class using mutual class information.

Related work
One-class Novelty Detection. In recent years, one-class
novelty detection has received tremendous attentions as a
traditional representation learning research problem. There
have been many classical approaches to tackle this problem
such as Principal Component Analysis (PCA). Deep learn-
ing, which has shown great performances in a variety of
fields such as computer vision, cybersecurity, medical assis-
tance, and etc., finds a way to learn representation and detect
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Figure 1: Limitation of novelty detection using image recon-
struction error. Top: Input images. Middle: Output images of
adversarial autoencoder (AAE). Bottom: mean squared error
(MSE) of all images. We set the images of digits of 0-8 and
9 as normal and novelty, respectively. Since mean of nov-
elty scores among the image of digit 9 (novelty class) is 7.4,
MSE values of normal image bigger than 7.4 lead to wrong
novelty detection.

the based on previously seen representation. AE-based nov-
elty detection mostly put reconstruction error such as mean
squared error as a novelty detection function after learning
the representation of the data. GAN-based novelty detection
usually takes discriminator’s prediction in the image space
as a tool of measuring reconstruction error. One-Class nov-
elty detection using GAN (OCGAN) shows a great perfor-
mance in novelty detection in uni-modal normality data.
Approaches on Novelty Score Function. There has been
other approaches to determine novelty scores other than
reconstruction error or discriminator’s prediction. Genera-
tive Probabilistic Novelty Detection with adversarial autoen-
coders (GPND) (Pidhorskyi, Almohsen, and Doretto 2018)
identifies novelty data by considering it to be an inlier or an
outlier. GPND has done this by utilizing a probabilistic ap-
proach and computing how likely it is that a new data was
generated by the normal distribution effectively. RaPP: Nov-
elty Detection with Reconstruction along Projection Path-
way (RaPP)(Kim et al. 2019) introduces a new way to quan-
tify novelty scores using values in hidden space activation
obtained from a deep autoencoder. RaPP compares input and
its autoencoder reconstruction both of in the input space and
in all of the hidden spaces. However, in order to enforce their
metrics, RaPP network is required to be symmetric, which
makes designing network architecture and training network
a very expensive work. As the data becomes more com-
plicated, it becomes more expensive due to fully-connected
layers in encoder and decoder caused by its structural prob-
lem. RaPP also showed a great performance in multi-modal
normality case.

Proposed Method: OAAE
In this section, We propose a new AAE novelty detection
algorithm using orthogonalized latent space (OAAE) for
multi-modal normality case. The key idea is to disentangle
latent space using mutual class information by employing
orthogonal low rank embedding (OLE) loss(Lezama et al.
2018), which enables us to achieve minimizing the variance
of latent vectors in intra-class as well as maximizing mar-
gins of inter-class latent vectors (in terms of angle; equiva-
lently orthogonalize inter-class latent vectors). With such an

orthogonalized latent space, we estimate a novelty score by
quantifying the change of angle in each latent vector.

Orthogonal Latent Embedding
OLE is carried out using rank function (Lezama et al. 2018).
Mathematical formulations of OLE begins with the follow-
ing equation:

arg min
T

C∑
c=1

rank(TXc)− rank(TX), s.t. ||T||2 = 1,

(1)
where X denotes input dataset, Xc denotes the set of data
points with class c in a subspace of Rd, T is a linear trans-
formation on the data (i.e., feed forward network for deep
learning framework), ||·||2 is the matrix Euclidean norm. We
interpret this formulation term by term intuitively (Qiu and
Sapiro 2015). Minimizing the first term

∑C
c=1 rank(TXc)

keeps the transformed data from the same subspace a con-
sistent representation, and maximizing the second term
rank(TX) encourages the transformed data from different
subspace to represent a diverse representation. Additionally,
the normalization constraint ||T||2 = 1 avoids the trivial so-
lution, i.e., T = 0. Since it is known that the nuclear norm
(||A||?; the sum of the singular values of the matrix A) is
the convex envelop of rank(A) over the unit ball of matrices
(Fazel 2003), and due to efficiency of optimization (Candès
et al. 2011; Recht, Fazel, and Parrilo 2010), we reformulate
the equation using the nuclear norm as follows:

arg min
T

C∑
c=1

||TXc||? − ||TX||?, s.t. ||T||2 = 1. (2)

Following (Lezama et al. 2018), (2) becomes the follow-
ing loss using minibatch as below to be applied to the deep
learning framework:

LOLE(Y) :=

C∑
c=1

max(∆, ||Yc||?)− ||Y||? (3)

=

C∑
c=1

max(∆, ||Φ(Xc; θ)||?)− ||Φ(X; θ)||?.

(4)

To optimize (3) using backpropagation, the projected sub-
gradient for the nuclear norm and the descent direction for
(3) are obtained in by using SVD decomposition on matrix
A, i.e., A = UΣVT , and zero filling matrix Zc as follows:

g||A||?(A) = U1V
T
1 , (5)

gLOLE
(Y) =

C∑
c=1

[
Z(l)

c |Uc1U
T
c1|Z(r)

c

]
−U1V

T
1 . (6)

where U1 and V1 be the first s columns of U and V, re-
spectively, corresponding to eigenvalues larger than a small
threshold value δ. Similarly, Uc1 and Vc1 be left and right
singular vectors of Yc where their corresponding singular
values are greater than the threshold δ. Using LOLE loss, we



Figure 2: Embedding of trained latent space using t-SNE.
Left: AAE without OLE loss. Right: AAE with OLE loss.
Reduced variance of intra-class clusters of latent vectors was
observed.
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Figure 3: OAAE architecture

embed our high dimension dataset in orthgonoalized latent
space with the two main benefits: reduced variance of intra-
class, maximized angle margins of clusters of inter-class as
shown in Figure 2.

Architecture
The architecture of the proposed network is based on AAE
(Makhzani et al. 2015) and classifier was added to use mu-
tual class information in OLE loss shown in Figure 3. Each
of encoder and decoder in our model has five layers with
three convolutional layers and two fully-connected layers at
the end. Details of training of our algorithm is described in
Algorithm1. Main key in our algorithm is to adopt OLE loss
to use mutual information and disentangle features in latent
space and returns novelty score using the change of angles
in latent vectors.

Experiment
Datasets
MNIST. The MNIST database, which stands for Modified
National Institute of Standards and Technology database,
consists of a large number of 28×28 gray scale images of
handwritten digits (10 classes; 0∼9). The MNIST dataset
is commonly and widely used for various computer vision,
image processing researches due to its simplicity. In our ex-
periments, we choose images of one handwritten digit and
every other images of remaining nine different handwritten
digits as a novelty class, normal class data, respectively.

Algorithm 1 Novelty Detection algorithm
1: Input : Image x with class c, N Epochs, K Iteration
2: Training phase
3: for epochs 0 to N do
4: for iteration 0 to K do
5: n← N (0, I)
6: z ← N (0, I)
7: Discriminator training phase
8: Llatent ← Dlatent(z, 1) + Dlatent(Enc(x +
n), 0)

9: Limage ← Dimage(x, 1) +Dimage(Dec(z), 0)
10: Back-propagate and update
11: Encoder, Decoder and Classifier training phase
12: if K%5 == 0 then
13: Lrecon ← ||x−Dec(Enc(x+ n))||22
14: LEnc ← Dlatent(Enc(x+ n), 1)
15: LDec ← Dimage(Dec(z), 1)
16: Lole ← OLE(Enc(x+ n), c)
17: Lcls ← CrossEntropy(C(Enc(x+n)), c)
18: Back-propagate and update
19: end if
20: end for
21: end for
22: Test phase
23: Test image x
24: z0 ← Enc(x)
25: z1 ← Enc(Dec(Enc(x)))
26: Novelty Score← angle(z0, z1)

Fasion MNIST (f-MNIST). The fashion-MNIST is a
dataset of 28×28 grayscale images 10 different classes (T-
shirt, Trouser, Pullover, Dress, Coat, Sandals, Shirt, Sneaker,
Bag, Ankle boots). It shares the same image size with the
original MNIST dataset but f-MNIST is regarded as a harder
data to learn in general because of the complexity that se-
mantic images have. Similar to the previous experiments on
MNIST dataset, we choose images with one class (e.g., T-
shirt) and every other images of remaining nine different
class as a novelty class, normal class data, respectively.
CIFAR10. The CIFAR10 dataset consists of 60000 32×32
coloured images with evenly distributed 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck).
This dataset was selected due to its complexity. CIFAR10
dataset is usually treated as harder data to train than MNIST
or f-MNIST in general due to its multi-channel trait.

Architectures of Baseline Algorithms
We compare performance of our models to that of two state-
of-the-art GANs-based novelty detection algorithms: OC-
GAN, RaPP. We briefly explain how those two algorithms
work in the following sections.
OCGAN. OCGAN solves classical one-class novelty detec-
tion problem and aims to determine whether the new input
is from the same class or not. The key idea of OCGAN is
to learn latent representations of normal class data using a
denoising autoencoder network and to directly force the la-
tent space to entirely represent the given class. OCGAN is



Table 1: AUROC of OAAE and the baselines
MNIST

0 1 2 3 4 5 6 7 8 9 Mean
OCGAN 0.91 0.08 0.76 0.81 0.77 0.72 0.87 0.37 0.923 0.46 0.67
RaPP 0.99 0.89 0.98 0.95 0.92 0.97 0.98 0.97 0.96 0.89 0.95
OAAE 0.98 0.97 0.97 0.95 0.95 0.97 0.975 0.972 0.982 0.968 0.970

f-MNIST
T-shirt Trouser Pullover Dress Coat Sandals Shirt Sneaker Bag Boots Mean

OCGAN 0.577 0.750 0.596 0.723 0.557 0.801 0.546 0.769 0.877 0.726 0.692
RaPP 0.70 0.78 0.65 0.82 0.57 0.85 0.58 0.61 0.98 0.82 0.736
OAAE 0.915 0.88 0.816 0.847 0.853 0.716 0.791 0.789 0.966 0.799 0.837

CIFAR10
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Mean

OCGAN 0.54 0.71 0.40 0.52 0.31 0.58 0.40 0.61 0.44 0.69 0.52
RAPP 0.469 0.654 0.416 0.578 0.357 0.604 0.382 0.579 0.553 0.681 0.527
OAAE 0.706 0.777 0.579 0.713 0.660 0.742 0.620 0.683 0.652 0.786 0.692

particularly focused on learning uni-modal normality data.
RaPP. A new methodolgy for novelty detection is proposed
in RaPP by adopting values in hidden space activation ob-
tained from a deep AE. RAPP compares input and its AE
or VAE reconstruction in the hidden spaces as well as in the
input space. RaPP introduces two metrics combining those
hidden activated values to measure novelty scores. In order
to achieve this, RaPP requires the model to be symmetric
to enforce its evaluation methodologies, which causes its
structural limitation, and training model becomes a very ex-
pensive work as the data becomes more complicated due
to fully-connected layers in encoder and decoder caused by
their structural problem.

Training Details
All of our experiments were conducted by Python 3.6.9.
Adam optimizer was adopted to train our model. For the sta-
ble adversarial learning, the encoder is trained with one it-
eration after every five iterations for the discriminator. Each
experiment is carried out with 100 epochs with batch size
as much as 64, and we set learning rate as 0.0004. Gaussian
noises with standard deviation of 0.02 were added to the in-
put image data at the training phase.

Experimental Results
We evaluate the performances of all experiments using Area
Under the Receiver Operating Characteristic curve (AU-
ROC) as shown in Table 1.

Discussion
Our methods showed a better performance than other pre-
vious GAN-based state-of-the-art novelty detection algo-
rithms such as OCGAN, RaPP. Specifically, our approach
provides a much higher AUROC values for experiments on
more complicated data such as f-MNIST, CIFAR-10. It sup-
ports that as a tool of novelty score measurement, change

of latent vector is more reasonable than image reconstruc-
tion errors since image reconstruction error can be more es-
calated in more complicated data. In training level, our ap-
proach leverages on class labels in normal dataset, which is
sometimes a expensive work. Unsupervised learning frame-
work without using normal class labels can be considered
potentially.

Conclusion
We proposed a new novelty detection framework using deep
generative models. Instead of evaluating novelty class using
image reconstruction error, the change of angle in latent vec-
tor is regarded as a tool for novelty detection quantity. We
adopt OLE loss using mutual class information to achieve
disentanglement of latent vectors to maximize the effect of
class information. Our new approach shows a greater perfor-
mance in multi-modal normality scenarios than previously
existing GAN based state-of-the-art novelty detection algo-
rithms.
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